11 research outputs found

    Porous silicon gas sensing

    No full text
    In this chapter, the state of the art on porous silicon gas sensors, both electrical and optical, is reviewed by paying special emphasis on the advancement of gas sensor architectures that has occurred over the two last decades, as well as on the different functionalization approaches implemented in and chemical species sensed with such architectures. Ten main architectures, five for the electrical domain (capacitor, Schottky-like diode, resistor, FET-like transistor, and junction-like diode) and five for the optical domain (single layer, waveguide, Bragg mirror, resonant cavity, and rugate filter), have been proposed so far for improving gas sensor features. Several functionalization schemes have been integrated in such architectures to improve sensor performance, and more than 50 different chemical species have been sensed using porous silicon gas sensors. The latest trends on multiparametric sensing on single devices as well as on multisensor integration in a single chip, for both optical and electrical domains, are also discussed

    Porous Silicon Micromachining Technology

    No full text
    In this chapter, silicon electrochemical micromachining (ECM) technology is reviewed with particular emphasis to the fabrication of complex microstructures and microsystems, as well as to their applications in optofluidics, biosensing, photonics, and medical fields. ECM, which is based on the controlled electrochemical dissolution of n-type silicon under backside illumination in acidic (HF-based) electrolytes, enables microstructuring of silicon wafers to be controlled up to the higher aspect ratios (over 100) with sub-micrometer accuracy, thus pushing silicon micromachining well beyond up-to-date both wet and dry microstructuring technologies. Both basic and advanced features of ECM technology are described and discussed by taking the fabrication of a silicon microgripper as case study

    Recognition of Initiation Sites in Eukaryotic Messenger RNAs

    No full text

    Replication Signals in Prokaryotic DNA

    No full text

    EBV Persistence—Introducing the Virus

    No full text

    Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes

    No full text
    corecore