26,038 research outputs found

    Quantum superchemistry in an output coupler of coherent matter waves

    Get PDF
    We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photo-association. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam.Comment: 3 figures, accepted by Phys.Rev.A (submitted to prl in July, transferred to pra in Sep. and accepted in Nov.

    Determine the galaxy bias factors on large scales using bispectrum method

    Full text link
    We study whether the bias factors of galaxies can be unbiasedly recovered from their power spectra and bispectra. We use a set of numerical N-body simulations and construct large mock galaxy catalogs based upon the semi-analytical model of Croton et al. (2006). We measure the reduced bispectra for galaxies of different luminosity, and determine the linear and first nonlinear bias factors from their bispectra. We find that on large scales down to that of the wavenumber k=0.1h/Mpc, the bias factors b1 and b2 are nearly constant, and b1 obtained with the bispectrum method agrees very well with the expected value. The nonlinear bias factor b2 is negative, except for the most luminous galaxies with M<-23 which have a positive b2. The behavior of b2 of galaxies is consistent with the b2 mass dependence of their host halos. We show that it is essential to have an accurate estimation of the dark matter bispectrum in order to have an unbiased measurement of b1 and b2. We also test the analytical approach of incorporating halo occupation distribution to model the galaxy power spectrum and bispectrum. The halo model predictions do not fit the simulation results well on the precision requirement of current cosmological studies.Comment: 9 pages, 8 figures, accepted for publication in Ap

    A binaural grouping model for predicting speech intelligibility in multitalker environments

    Get PDF
    Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model.R01 DC000100 - NIDCD NIH HH

    Growth Tight Actions of Product Groups

    Full text link
    A group action on a metric space is called growth tight if the exponential growth rate of the group with respect to the induced pseudo-metric is strictly greater than that of its quotients. A prototypical example is the action of a free group on its Cayley graph with respect to a free generating set. More generally, with Arzhantseva we have shown that group actions with strongly contracting elements are growth tight. Examples of non-growth tight actions are product groups acting on the L1L^1 products of Cayley graphs of the factors. In this paper we consider actions of product groups on product spaces, where each factor group acts with a strongly contracting element on its respective factor space. We show that this action is growth tight with respect to the LpL^p metric on the product space, for all 1<p≤∞1<p\leq \infty. In particular, the L∞L^\infty metric on a product of Cayley graphs corresponds to a word metric on the product group. This gives the first examples of groups that are growth tight with respect to an action on one of their Cayley graphs and non-growth tight with respect to an action on another, answering a question of Grigorchuk and de la Harpe.Comment: 13 pages v2 15 pages, minor changes, to appear in Groups, Geometry, and Dynamic

    Non-Markovian Relaxation of a Three-Level System: Quantum Trajectory Approach

    Full text link
    The non-Markovian dynamics of a three-level quantum system coupled to a bosonic environment is a difficult problem due to the lack of an exact dynamic equation such as a master equation. We present for the first time an exact quantum trajectory approach to a dissipative three-level model. We have established a convolutionless stochastic Schr\"{o}dinger equation called time-local quantum state diffusion (QSD) equation without any approximations, in particular, without Markov approximation. Our exact time-local QSD equation opens a new avenue for exploring quantum dynamics for a higher dimensional quantum system coupled to a non-Markovian environment.Comment: 4 pages, 2 figure
    • …
    corecore