59,667 research outputs found
Topological Weyl and Node-Line Semimetals in Ferromagnetic Vanadium-Phosphorous-Oxide -VOPO Compound
We propose that the topological semimetal features can co-exist with
ferromagnetic ground state in vanadium-phosphorous-oxide -VOPO
compound from first-principles calculations. In this magnetic system with
inversion symmetry, the direction of magnetization is able to manipulate the
symmetric protected band structures from a node-line type to a Weyl one in the
presence of spin-orbital-coupling. The node-line semimetal phase is protected
by the mirror symmetry with the reflection-invariant plane perpendicular to
magnetic order. Within mirror symmetry breaking due to the magnetization along
other directions, the gapless node-line loop will degenerate to only one pair
of Weyl points protected by the rotational symmetry along the magnetic axis,
which are largely separated in momentum space. Such Weyl semimetal phase
provides a nice candidate with the minimum number of Weyl points in a condensed
matter system. The results of surface band calculations confirm the non-trivial
topology of this proposed compound. This findings provide a realistic candidate
for the investigation of topological semimetals with time-reversal symmetry
breaking, particularly towards the realization of quantum anomalous Hall effect
in Weyl semimetals.Comment: 5 pages, 4 figure
Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: A model of walking/conformal Technicolor
QCD with two flavours of massless colour-sextet quarks is considered as a
model for conformal/walking Technicolor. If this theory possess an infrared
fixed point, as indicated by 2-loop perturbation theory, it is a
conformal(unparticle) field theory. If, on the other hand, a chiral condensate
forms on the weak-coupling side of this would-be fixed point, the theory
remains confining. The only difference between such a theory and regular QCD is
that there is a range of momentum scales over which the coupling constant runs
very slowly (walks). In this first analysis, we simulate the lattice version of
QCD with two flavours of staggered quarks at finite temperatures on lattices of
temporal extent and 6. The deconfinement and chiral-symmetry
restoration couplings give us a measure of the scales associated with
confinement and chiral-symmetry breaking. We find that, in contrast to what is
seen with fundamental quarks, these transition couplings are very different.
for each of these transitions increases significantly from
and as expected for the finite temperature transitions of an
asymptotically-free theory. This suggests a walking rather than a conformal
behaviour, in contrast to what is observed with Wilson quarks. In contrast to
what is found for fundamental quarks, the deconfined phase exhibits states in
which the Polyakov loop is oriented in the directions of all three cube roots
of unity. At very weak coupling the states with complex Polyakov loops undergo
a transition to a state with a real, negative Polyakov loop.Comment: 21 pages, 9 figures, Revtex with postscript figures. One extra
reference was added; text is unchanged. Corrected typographical erro
Leptogenesis origin of Dirac gaugino dark matter
The Dirac nature of the gauginos (and also the Higgsinos) can be realized in
-symmetric supersymmetry models. In this class of models, the Dirac bino (or
wino) with a small mixture of the Dirac Higgsinos is a good dark matter
candidate. When the seesaw mechanism with Higgs triplet superfields is
implemented to account for the neutrino masses and mixing, the leptogenesis
driven by the heavy triplet decay is shown to produce not only the
matter-antimatter asymmetry but also the asymmetric relic density of the Dirac
gaugino dark matter. The dark matter mass turns out to be controlled by the
Yukawa couplings of the heavy Higgs triplets, and it can be naturally at the
weak scale for a mild hierarchy of the Yukawa couplings.Comment: 9 pages. Restructured for clear presentation, corrected some errors
and typos. No change in conclusio
- …