39 research outputs found

    Flux Weakening Strategy Optimization for Five-Phase PM Machine with Concentrated Windings

    Get PDF
    The paper applies an Efficient Global Optimization method (EGO) to improve the efficiency, in flux weakening region, of a given 5-phase Permanent Magnet (PM) machine. An optimal control for the four independent currents is thus defined. Moreover, a modification proposal of the machine geometry is added to the optimization process of the global drive. The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region. But these losses, which highly depend on magnetic state of the machine, must be calculated by Finite Element Method (FEM) to be accurate. The FEM has the drawback to be time consuming. It is why a direct optimization using FEM is critical. EGO method, using sparingly FEM, allows to find a feasible solution to this hard optimization problem of control and design of multi-phase drive

    Stereo Calibration and Rectification for Omnidirectional Multi-Camera Systems

    No full text
    Stereo vision has been studied for decades as a fundamental problem in the field of computer vision. In recent years, computer vision and image processing with a large field of view, especially using omnidirectional vision and panoramic images, has been receiving increasing attention. An important problem for stereo vision is calibration. Although various kinds of calibration methods for omnidirectional cameras are proposed, most of them are limited to calibrate catadioptric cameras or fish-eye cameras and cannot be applied directly to multi-camera systems. In this work, we propose an easy calibration method with closed-form initialization and iterative optimization for omnidirectional multi-camera systems. The method only requires image pairs of the 2D target plane in a few different views. A method based on the spherical camera model is also proposed for rectifying omnidirectional stereo pairs. Using real data captured by Ladybug3, we carry out some experiments, including stereo calibration, rectification and 3D reconstruction. Statistical analyses and comparisons of the experimental results are also presented. As the experimental results show, the calibration results are precise and the effect of rectification is promising

    Diagnostic Analysis of the Generative Mechanism of Extratropical Cyclones in the Northwest Pacific and Northwest Atlantic

    No full text
    We investigated the early-stage development of cyclones occurring in the strong baroclinic regions in the Northwest Pacific and the Northwest Atlantic based on European Center for Medium-range Weather Forecasts Re-Analysis-Interim (ERA-Interim) data. The composite background conditions corresponding to the cyclones on the onset day are characterized by upper troposphere divergence of westerly jet ahead of a trough, low troposphere convergence of westerly jet behind a trough, and strong meridional air temperature gradient (baroclinicity) both in the Northwest Pacific and the Northwest Atlantic, but with stronger baroclinicity in the Northwest Pacific. The composite velocity and temperature fields of the cyclone on the onset day show a clear horizontal front and a westward and northward vertical tilting of cyclonic circulation to the cold zone. The composite Northwest Pacific cyclone filed on the onset day has a warm core, whereas the composite Northwest Atlantic cyclone field has a cold core in the low troposphere. The leading adiabatic processes that contribute to the developing of the cold core cyclone in the Northwest Atlantic on the onset day is the temperature advection, while stronger vertical motion induces stronger adiabatic warming in the Northwest Pacific cyclones, which has a significant contribution to the development of warm core cyclones on the onset day

    Optimal Operation of a Single Unit with an Adjustable Blade in an Interbasin Water Transfer Pumping Station Based on Successive Approximation Discretization for Blade Angle

    No full text
    In the mathematical model of the optimal operation of a single pump unit with a fully adjustable blade in the Chinese South-to-North Water Diversion Project, the decision variable, namely, blade angle, was uniformly dispersed in its feasible region in a fixed step size in consideration of the requirements of the pumping head and matching motor power. 1D dynamic programming was applied to solve the original model. When the obtained blade for each time period was set as the middle reference value and the discrete region of the blade was reduced to two times of the step size in the previous time, the blade angle was correspondingly reduced and dispersed in this new discrete region, thus eliminating unnecessary optimization space. Then, 1D dynamic programming was applied again to optimize the blade angle of the single pump unit further. After a series of successive approximation discretization of the blade angle and corresponding solutions of the obtained mathematical model, the optimization process was considered completed when the given control precision met the requirement. A case study showed that under typical operating conditions, the total cost saving percentage of water pumping quantity reached 0.048%–0.463%, with an average saving rate of 0.192%. The actual total water pumping quantity of the single unit decreased by 2153 m3 on the average. The proposed discretization method exerted a better optimization effect and needed a smaller computational amount compared with traditional one-time uniform discretization in the original feasible region of the blade angle

    Optimization of Pressurized Tree-Type Water Distribution Network Using the Improved Decomposition–Dynamic Programming Aggregation Algorithm

    No full text
    Pressurized tree-type water distribution network (WDN) is widely used in rural water supply projects. Optimization of this network has direct practical significance to reduce the capital cost. This paper developed a discrete nonlinear model to obtain the minimum equivalent annual cost (EAC) of pressurized tree-type WDN. The pump head and pipe diameter were taken into account as the double decision variables, while the pipe head loss and flow velocity were the constraint conditions. The model was solved by using the improved decomposition–dynamic programming aggregation (DDPA) algorithm and applied to a real case. The optimization results showed that the annual investment, depreciation and maintenance cost (W1) were reduced by 22.5%; however, the pumps’ operational cost (p) increased by 17.9% compared to the actual layout. Overall, the optimal EAC was reduced by 15.2% with the optimized pump head and optimal diameter distribution of the network. This method demonstrated an intrinsic trade-off between investment and operational cost, and provided an efficient decision support tool for least-cost design of pressurized tree-type WDN
    corecore