8,751 research outputs found

    Performance Analysis of l_0 Norm Constraint Least Mean Square Algorithm

    Full text link
    As one of the recently proposed algorithms for sparse system identification, l0l_0 norm constraint Least Mean Square (l0l_0-LMS) algorithm modifies the cost function of the traditional method with a penalty of tap-weight sparsity. The performance of l0l_0-LMS is quite attractive compared with its various precursors. However, there has been no detailed study of its performance. This paper presents all-around and throughout theoretical performance analysis of l0l_0-LMS for white Gaussian input data based on some reasonable assumptions. Expressions for steady-state mean square deviation (MSD) are derived and discussed with respect to algorithm parameters and system sparsity. The parameter selection rule is established for achieving the best performance. Approximated with Taylor series, the instantaneous behavior is also derived. In addition, the relationship between l0l_0-LMS and some previous arts and the sufficient conditions for l0l_0-LMS to accelerate convergence are set up. Finally, all of the theoretical results are compared with simulations and are shown to agree well in a large range of parameter setting.Comment: 31 pages, 8 figure
    • …
    corecore