10,086 research outputs found

    A self-consistent theory of atomic Fermi gases with a Feshbach resonance at the superfluid transition

    Full text link
    A self-consistent theory is derived to describe the BCS-BEC crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper-pairs and ``bare'' Feshbach molecules, has been included within a self-consistent TT-matrix approximation, beyond the Nozi\`{e}res and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature TcT_c increases monotonically at all widths as the effective interaction between atoms becomes more attractive. Furthermore, a residue factor ZmZ_m of the molecule's Green function and a complex effective mass have been determined, to characterize the fraction and lifetime of Feshbach molecules at TcT_c. Our many-body calculations of ZmZ_m agree qualitatively well with the recent measurments on the gas of 6^6Li atoms near the broad resonance at 834 Gauss. The crossover from narrow to broad resonances has also been studied.Comment: 6 papes, 6 figure

    Topological superfluid in one-dimensional spin-orbit coupled atomic Fermi gases

    Full text link
    ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122, AustraliaComment: 7 pages, 8 figures; submitted to Physical Review

    On the renormalization of quasi parton distribution

    Full text link
    Recent developments showed that light-cone parton distributions can be studied by investigating the large momentum limit of the hadronic matrix elements of spacelike correlators, which are known as quasi parton distributions. Like a light-cone parton distribution, a quasi parton distribution also contains ultraviolet divergences and therefore needs renormalization. The renormalization of non-local operators in general is not well understood. However, in the case of quasi quark distribution, the bilinear quark operator with a straight-line gauge link appears to be multiplicatively renormalizable by the quark wave function renormalization in the axial gauge. We first show that the renormalization of the self energy correction to the quasi quark distribution is equivalent to that of the heavy-light quark vector current in heavy quark effective theory at one-loop order. Assuming this equivalence at two-loop order, we then show that the multiplicative renormalizability of the quasi quark distribution is true at two-loop order.Comment: 14 pages, 4 figure

    First and second sound in a two-dimensional dilute Bose gas across the Berezinskii-Kosterlitz-Thouless transition

    Full text link
    We theoretically investigate first and second sound of a two-dimensional (2D) atomic Bose gas in harmonic traps by solving Landau's two-fluid hydrodynamic equations. For an isotropic trap, we find that first and second sound modes become degenerate at certain temperatures and exhibit typical avoided crossings in mode frequencies. At these temperatures, second sound has significant density fluctuation due to its hybridization with first sound and has a divergent mode frequency towards the Berezinskii-Kosterlitz-Thouless (BKT) transition. For a highly anisotropic trap, we derive the simplified one-dimensional hydrodynamic equations and discuss the sound-wave propagation along the weakly confined direction. Due to the universal jump of the superfluid density inherent to the BKT transition, we show that the first sound velocity exhibits a kink across the transition. Our predictions can be readily examined in current experimental setups for 2D dilute Bose gases.Comment: 5 pages, 4 figure

    Topological Fulde-Ferrell superfluid in spin-orbit coupled atomic Fermi gases

    Full text link
    We theoretically predict a new topological matter - topological inhomogeneous Fulde-Ferrell superfluid - in one-dimensional atomic Fermi gases with equal Rashba and Dresselhaus spin-orbit coupling near s-wave Feshbach resonances. The realization of such a spin-orbit coupled Fermi system has already been demonstrated recently by using a two-photon Raman process and the extra one-dimensional confinement is easy to achieve using a tight two-dimensional optical lattice. The topological Fulde-Ferrell superfluid phase is characterized by a nonzero center-of-mass momentum and a non-trivial Berry phase. By tuning the Rabi frequency and the detuning of Raman laser beams, we show that such an exotic topological phase occupies a significant part of parameter space and therefore it could be easily observed experimentally, by using, for example, momentum-resolved and spatially resolved radio-frequency spectroscopy.Comment: 5 pages, 4 figure
    • …
    corecore