31 research outputs found

    The aberrant asynchronous replication — characterizing lymphocytes of cancer patients — is erased following stem cell transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aberrations of allelic replication timing are epigenetic markers observed in peripheral blood cells of cancer patients. The aberrant markers are non-cancer-type-specific and are accompanied by increased levels of sporadic aneuploidy. The study aimed at following the epigenetic markers and aneuploidy levels in cells of patients with haematological malignancies from diagnosis to full remission, as achieved by allogeneic stem cell transplantation (alloSCT).</p> <p>Methods</p> <p><it>TP53 </it>(a tumor suppressor gene assigned to chromosome 17), <it>AML1 </it>(a gene assigned to chromosome 21 and involved in the leukaemia-abundant 8;21 translocation) and the pericentomeric satellite sequence of chromosome 17 (<it>CEN17</it>) were used for replication timing assessments. Aneuploidy was monitored by enumerating the copy numbers of chromosomes 17 and 21. Replication timing and aneuploidy were detected cytogenetically using fluorescence <it>in situ </it>hybridization (FISH) technology applied to phytohemagglutinin (PHA)-stimulated lymphocytes.</p> <p>Results</p> <p>We show that aberrant epigenetic markers are detected in patients with hematological malignancies from the time of diagnosis through to when they are scheduled to undergo alloSCT. These aberrations are unaffected by the clinical status of the disease and are displayed both during accelerated stages as well as in remission. Yet, these markers are eradicated completely following stem cell transplantation. In contrast, the increased levels of aneuploidy (irreversible genetic alterations) displayed in blood lymphocytes at various stages of disease are not eliminated following transplantation. However, they do not elevate and remain unchanged (stable state). A demethylating anti-cancer drug, 5-azacytidine, applied in vitro to lymphocytes of patients prior to transplantation mimics the effect of transplantation: the epigenetic aberrations disappear while aneuploidy stays unchanged.</p> <p>Conclusions</p> <p>The reversible nature of the replication aberrations may serve as potential epigenetic blood markers for evaluating the success of transplant or other treatments and for long-term follow up of the patients who have overcome a hematological malignancy.</p

    Interstitial duplications of chromosome region 15q11q13: Clinical and molecular characterization

    No full text
    Duplications of chromosome region 15q11q13 often occur as a supernumerary chromosome 15. Less frequently they occur as interstitial duplications [dup(15)]. We describe the clinical and molecular characteristics of three patients with de novo dup(15). The patients, two males and one female (ages 3-21 years), had nonspecific findings that included autistic behavior, hypotonia, and variable degrees of mental retardation. The extent, orientation, and parental origin of the duplications were assessed by fluorescent in situ hybridization, microsatellite analyses, and methylation status at D15S63. Two patients had large direct duplications of 15q11q13 [dir dup(15)(q11q13)] that extended through the entire Angelman syndrome/Prader-Willi syndrome (AS/PWS) chromosomal region. Their proximal and distal breaks, at D15S541 or D15S9 and between D15S12 and D15S24, respectively, mere comparable to those found in the common AS/PWS deletions. This suggests that duplications and deletions may be the reciprocal product of an unequal recombination event. These two duplications were maternally derived, but the origin of the chromatids involved in the unequal crossing over in meiosis differs. In one patient, the duplication originated from two different maternal chromosomes, while in the other patient it arose from the same maternal chromosome. The third patient had a much smaller duplication that involved only D15S11 and parental origin could not be determined. There was no obvious correlation between phenotype and extent of the duplication in these patients. Am. J. Med. Genet, 79:82-89, 1998, (C) 1998 Wiley-Liss, Inc

    Fluorescence in situ hybridization: a new method for determining primary sex ratio in ants

    No full text
    The haplodiploid sex determining system in Hymenoptera, whereby males develop from haploid eggs and females from diploid eggs, allows females to control the primary sex ratio (the proportion of each sex at oviposition) in response to ecological and/or genetic conditions. Surprisingly, primary sex ratio adjustment by queens in eusocial Hymenoptera has been poorly studied, because of difficulties in sexing the eggs laid. Here, we show that fluorescence in situ hybridization (FISH) can be used to accurately determine the sex (haploid or diploid) of eggs, and hence the primary sex ratio, in ants. We first isolated the homologue coding sequences of the abdominal-A gene from 10 species of 8 subfamilies of Formicidae. Our data show that the nucleotide sequence of this gene is highly conserved among the different subfamilies. Second, we used a sequence of 4.5 kbp from this gene as a DNA probe for primary sex ratio determination by FISH. Our results show that this DNA probe hybridizes successfully with its complementary DNA sequence in all ant species tested, and allows reliable determination of the sex of eggs. Our proposed method should greatly facilitate empirical tests of primary sex ratio in ants.FLWINinfo:eu-repo/semantics/publishe
    corecore