17 research outputs found

    Maternal oral health status and preterm low birth weight at Muhimbili National Hospital, Tanzania: a case-control study

    Get PDF
    The study examined the relationship between oral health status (periodontal disease and carious pulpal exposure (CPE)) and preterm low-birth-weight (PTLBW) infant deliveries among Tanzanian-African mothers at Muhimbili National Hospital (MNH), Tanzania. A retrospective case-control study was conducted, involving 373 postpartum mothers aged 14-44 years (PTLBW--150 cases) and at term normal-birth-weight (TNBW)--223 controls), using structured questionnaire and full-mouth examination for periodontal and dentition status. The mean number of sites with gingival bleeding was higher in PTLBW than in TNBW (P = 0.026). No significant differences were observed for sites with plaque, calculus, teeth with decay, missing, filling (DMFT) between PTLBW and TNBW. Controlling for known risk factors in all post-partum (n = 373), and primiparaous (n = 206) mothers, no significant differences were found regarding periodontal disease diagnosis threshold (PDT) (four sites or more that had probing periodontal pocket depth 4+mm and gingival bleeding > or = 30% sites), and CPE between cases and controls. Significant risk factors for PTLBW among primi- and multiparous mothers together were age < or = 19 years (adjusted Odds Ratio (aOR) = 2.09, 95% Confidence interval (95% CI): 1.18-3.67, P = 0.011), hypertension (aOR = 2.44, (95% CI): 1.20-4.93, P = 0.013) and being un-married (aOR = 1.59, (95% CI): 1.00-2.53, P = 0.049). For primiparous mothers significant risk factors for PTLBW were age < or = 19 years (aOR = 2.07, 95% CI: 1.13 - 3.81, P = 0.019), and being un-married (aOR = 2.58, 95% CI: 1.42-4.67, P = 0.002). These clinical findings show no evidence for periodontal disease or carious pulpal exposure being significant risk factors in PTLBW infant delivery among Tanzanian-Africans mothers at MNH, except for young age, hypertension, and being unmarried. Further research incorporating periodontal pathogens is recommended

    Numerical methods for the design and description of in vitro expansion processes of human mesenchymal stem cells

    Get PDF
    Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called “Digital Twin” of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks. In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown

    Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis

    Get PDF
    Background Mesenchymal stromal cells (MSCs) have been introduced as promising cell source for regenerative medicine. Besides their multilineage differentiation capacity, MSCs release a wide spectrum of bioactive factors. This secretome holds immunomodulatory and regenerative capacities. In intervertebral disc (IVD) cells, application of MSC secretome has been shown to decrease the apoptosis rate, induce proliferation, and promote production of extracellular matrix (ECM). For clinical translation of secretome-based treatment, characterization of the secretome composition is needed to better understand the induced biological processes and identify potentially effective secretomes. Methods This study aimed to investigate the proteome released by bone marrow-derived MSCs following exposure to a healthy, traumatic, or degenerative human IVD environment by mass spectroscopy and quantitative immunoassay analyses. Exposure of MSCs to the proinflammatory stimulus interleukin 1β (IL-1β) was used as control. Results Compared to MSC baseline secretome, there were 224 significantly up- or downregulated proteins following healthy, 179 following traumatic, 223 following degenerative IVD, and 160 proteins following IL-1β stimulus. Stimulation of MSCs with IVD conditioned media induced a more complex MSC secretome, involving more biological processes, compared to stimulation with IL-1β. The MSC response to stimulation with IVD conditioned medium was dependent on their pathological status. Conclusions The MSC secretome seemed to match the primary need of the IVD: homeostasis maintenance in the case of healthy IVDs, versus immunomodulation, adjustment of ECM synthesis and degradation disbalance, and ECM (re) organization in the case of traumatic and degenerative IVDs. These findings highlight the importance of cell preconditioning in the development of tailored secretome therapies.ISSN:1757-651
    corecore