83 research outputs found
Branched Chain Fatty Acids Reduce the Incidence of Necrotizing Enterocolitis and Alter Gastrointestinal Microbial Ecology in a Neonatal Rat Model
Branched chain fatty acids (BCFA) are found in the normal term human newborn's gut, deposited as major components of vernix caseosa ingested during late fetal life. We tested the hypothesis that premature infants' lack of exposure to gastrointestinal (GI) BCFA is associated with their microbiota and risk for necrotizing enterocolitis (NEC) using a neonatal rat model.Pups were collected one day before scheduled birth. The pups were exposed to asphyxia and cold stress to induce NEC. Pups were assigned to one of three experimental treatments. DF (dam-fed); Control, hand-fed rat milk substitute; BCFA, hand-fed rat milk substitute with 20%w/w BCFA. Total fat was equivalent (11%wt) for both the Control and BCFA groups. Cecal microbiota were characterized by 16S rRNA gene pyrosequencing, and intestinal injury, ileal cytokine and mucin gene expression, interleukin-10 (IL-10) peptide immunohistochemistry, and BCFA uptake in ileum phospholipids, serum and liver were assessed.NEC incidence was reduced by over 50% in the BCFA group compared to the Control group as assessed in ileal tissue; microbiota differed among all groups. BCFA-fed pups harbored greater levels of BCFA-associated Bacillus subtilis and Pseudomonas aeruginosa compared to Controls. Bacillus subtilis levels were five-fold greater in healthy pups compared to pups with NEC. BCFA were selectively incorporated into ileal phospholipids, serum and liver tissue. IL-10 expression increased three-fold in the BCFA group versus Controls and no other inflammatory or mucosal mRNA markers changed.At constant dietary fat level, BCFA reduce NEC incidence and alter microbiota composition. BCFA are also incorporated into pup ileum where they are associated with enhanced IL-10 and may exert other specific effects
Bovine telomere dynamics and the association between telomere length and productive lifespan
Average telomere length (TL) in blood cells has been shown to decline with age in a range of vertebrate species, and there is evidence that TL is a heritable trait associated with late-life health and mortality in humans. In non-human mammals, few studies to date have examined lifelong telomere dynamics and no study has estimated the heritability of TL, despite these being important steps towards assessing the potential of TL as a biomarker of productive lifespan and health in livestock species. Here we measured relative leukocyte TL (RLTL) in 1,328 samples from 308 Holstein Friesian dairy cows and in 284 samples from 38 female calves. We found that RLTL declines after birth but remains relatively stable in adult life. We also calculated the first heritability estimates of RLTL in a livestock species which were 0.38 (SE = 0.03) and 0.32 (SE = 0.08) for the cow and the calf dataset, respectively. RLTL measured at the ages of one and five years were positively correlated with productive lifespan (p < 0.05). We conclude that bovine RLTL is a heritable trait, and its association with productive lifespan may be used in breeding programmes aiming to enhance cow longevity
Suboptimal herd performance amplifies the spread of infectious disease in the cattle industry
Farms that purchase replacement breeding cattle are at increased risk of introducing many economically important diseases. The objectives of this analysis were to determine whether the total number of replacement breeding cattle purchased by individual farms could be reduced by improving herd performance and to quantify the effects of such reductions on the industry-level transmission dynamics of infectious cattle diseases. Detailed information on the performance and contact patterns of British cattle herds was extracted from the national cattle movement database as a case example. Approximately 69% of beef herds and 59% of dairy herds with an average of at least 20 recorded calvings per year purchased at least one replacement breeding animal. Results from zero-inflated negative binomial regression models revealed that herds with high average ages at first calving, prolonged calving intervals, abnormally high or low culling rates, and high calf mortality rates were generally more likely to be open herds and to purchase greater numbers of replacement breeding cattle. If all herds achieved the same level of performance as the top 20% of herds, the total number of replacement beef and dairy cattle purchased could be reduced by an estimated 34% and 51%, respectively. Although these purchases accounted for only 13% of between-herd contacts in the industry trade network, they were found to have a disproportionately strong influence on disease transmission dynamics. These findings suggest that targeting extension services at herds with suboptimal performance may be an effective strategy for controlling endemic cattle diseases while simultaneously improving industry productivity
DISTRIBUTION OF GBM HEPARAN-SULFATE PROTEOGLYCAN CORE PROTEIN AND SIDE-CHAINS IN HUMAN GLOMERULAR-DISEASES
Using monoclonal antibodies (mAbs) recognizing either the core protein or the heparan sulfate (HS) side chain of human GBM heparan sulfate proteoglycan (HSPG), we investigated their glomerular distribution on cryostat sections of human kidney tissues. The study involved 95 biopsies comprising twelve different glomerulopathies. Four normal kidney specimens served as controls. A homogenous to linear staining of the GBM was observed in the normal kidney with anti-HSPG-core mAb (JM-72) and anti-HS mAb (JM-403). In human glomerulopathies the major alteration was a segmental or total absence of GBM staining with anti-HS mAb JM-403, which is most pronounced in lupus nephritis, membranous glomerulonephritis (GN), minimal change disease and diabetic nephropathy, whereas the HSPG-core staining by mAb JM-72 was unaltered. In addition we found HSPG-core protein in the mesangial matrix when this was increased in membranoproliferative GN Type I, Schonlein-Henoch GN, IgA nephropathy, lupus nephritis, diabetic nephropathy and in focal glomerulosclerosis. Also staining with the anti-HS mAb JM-403 became positive within the mesangium, although to a lesser extent. Furthermore, amyloid deposits in AL and AA amyloidosis clearly stained with anti-HSPG-core mAb JM-72, and to a lesser degree with anti-HS mAb JM-403. Finally, in membranous GN (stage II and III), the GBM staining with anti-HSPG-core mAb JM-72 became irregular or granular, probably related to the formation of spikes. In conclusion, major alterations were observed in the glomerular distribution of HS and HSPG-core in various human glomerulopathies. The mAbs can be useful to further delineate the significance of HSPG and HS for glomerular diseases
- …