26 research outputs found

    Soluble CD59 Expressed from an Adenovirus In Vivo Is a Potent Inhibitor of Complement Deposition on Murine Liver Vascular Endothelium

    Get PDF
    Inappropriate activation of complement on the vascular endothelium of specific organs, or systemically, underlies the etiology of a number of diseases. These disorders include atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, atherosclerosis, age-related macular degeneration, diabetic retinopathy, and transplant rejection. Inhibition of the terminal step of complement activation, i.e. formation of the membrane attack complex, using CD59 has the advantage of retaining the upstream processes of the complement cascade necessary for fighting pathogens and retaining complement's crucial role in tissue homeostasis. Previous studies have shown the necessity of membrane targeting of soluble CD59 in order for it to prove an effective inhibitor of complement deposition both in vitro and in vivo. In this study we have generated an in vivo model of human complement activation on murine liver vascular endothelium. This model should prove useful for the development of anti-complement therapies for complement-induced pathologies of vascular endothelium. Using this model, we have demonstrated the viability of a non membrane-targeted soluble CD59 to significantly inhibit complement deposition on the endothelium of murine liver vasculature when expressed in vivo from an adenovirus. This result, unanticipated based on prior studies, suggests that the use of non membrane-targeted sCD59 as an anti-complement therapy be re-visited

    Retinal Degeneration Progression Changes Lentiviral Vector Cell Targeting in the Retina

    Get PDF
    In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina

    The PEX7-Mediated Peroxisomal Import System Is Required for Fungal Development and Pathogenicity in Magnaporthe oryzae

    Get PDF
    In eukaryotes, microbodies called peroxisomes play important roles in cellular activities during the life cycle. Previous studies indicate that peroxisomal functions are important for plant infection in many phytopathogenic fungi, but detailed relationships between fungal pathogenicity and peroxisomal function still remain unclear. Here we report the importance of peroxisomal protein import through PTS2 (Peroxisomal Targeting Signal 2) in fungal development and pathogenicity of Magnaporthe oryzae. Using an Agrobacterium tumefaciens-mediated transformation library, a pathogenicity-defective mutant was isolated from M. oryzae and identified as a T-DNA insert in the PTS2 receptor gene, MoPEX7. Gene disruption of MoPEX7 abolished peroxisomal localization of a thiolase (MoTHL1) containing PTS2, supporting its role in the peroxisomal protein import machinery. ΔMopex7 showed significantly reduced mycelial growth on media containing short-chain fatty acids as a sole carbon source. ΔMopex7 produced fewer conidiophores and conidia, but conidial germination was normal. Conidia of ΔMopex7 were able to develop appressoria, but failed to cause disease in plant cells, except after wound inoculation. Appressoria formed by ΔMopex7 showed a defect in turgor generation due to a delay in lipid degradation and increased cell wall porosity during maturation. Taken together, our results suggest that the MoPEX7-mediated peroxisomal matrix protein import system is required for fungal development and pathogenicity M. oryzae

    A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum

    Get PDF
    Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum
    corecore