6 research outputs found

    Variants in the FFAR1 Gene Are Associated with Beta Cell Function

    Get PDF
    The FFAR1 receptor is expressed mainly in pancreatic beta cells and is activated by medium to long chain free fatty acids (FFAs), as well as by thiazolidinediones, resulting in elevated Ca(2+) concentrations and promotion of insulin secretion. These properties suggest that FFAR1 could be a mediator of lipotoxicity and a potential candidate gene for Type 2 diabetes (T2D). We therefore investigated whether variations at the FFAR1 locus are associated with T2D and beta cell function.We re-sequenced the FFAR1 region in 96 subjects (48 healthy and 48 T2D individuals) and found 13 single nucleotide polymorphisms (SNPs) 8 of which were not previously described. Two SNPs located in the upstream region of the FFAR1 gene (rs1978013 and rs1978014) were chosen and genotyped in 1929 patients with T2D and 1405 healthy control subjects. We observed an association of rs1978013 and rs1978014 with insulinogenic index in males (p = 0.024) and females (p = 0.032), respectively. After Bonferroni corrections, no association with T2D was found in the case-control material, however a haplotype consisting of the T-G alleles conferred protection against T2D (p = 0.0010).Variation in the FFAR1 gene may contribute to impaired beta cell function in T2D

    Modeling of Carbohydrates Oxidation Rate During Exercise in Type 1 Highly-Trained Diabetic Patients

    No full text
    Management of Type 1 Diabetes (T1D) in the context of exercise or sports competition still represents a great challenge for athletes living with this disease, due to the wide excursions in blood glucose level with increased risk of life threatening hypoglycemia. Recently, an algorithm called ECRES has been developed to estimate patient-exercise tailored carbohydrates (CHO) supplement required to maintain safe blood glucose levels during physical activity. This method estimates a CHO supplement based on the patient\u2019s habitual therapy, the specific patient\u2019s insulin sensitivity and the overall amount of CHO oxidized during the specific exercise. The last is based on the glucose pulse relation, i.e. the relation between heart rate (HR) and CHO oxidation rate, already studied in sedentary and moderately-trained subjects, but not in well-trained athletes. This study aimed to model the glucose pulse relation during exercise in type 1 highly trained diabetic patients and in healthy subjects. HR, oxygen consumption and carbon dioxide production were acquired breath-by-breath in seven T1D and seven well-matched healthy highly-trained subjects at four different exercise intensity levels, as well as at rest. Results showed a linear CHOox-HR relation (CHOox\u2009=\u20090.76 \ub7 %HRmax - 19.6; n\u2009=\u200970, R2\u2009=\u20090.78) with no significant difference between the T1D and healthy athletes (p-value\u2009=\u20090.11). In conclusion, results of this study can be implemented in an updated version of the ECRES algorithm allowing an easy estimate of CHO supplement also in highly trained subjects. This useful support system can enhance the self-management of glycaemia during the training sessions of athletic patients throughout mHealth technologies

    An immune origin of type 2 diabetes?

    No full text
    corecore