192 research outputs found
Quantitative analysis on electric dipole energy in Rashba band splitting
We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.1131Ysciescopu
The sonographer’s role in RFA therapy of liver lesions
Interventional techniques using ultrasound guidance, such as Radio Frequency Ablation (RFA) of liver lesions, are the domain of the radiologist. However, real time ultrasound imaging as performed by the sonographer, is critical in monitoring the successful insertion and placement of the RFA needle. RFA is used to create a localised and controlled application of heat in order to induce necrosis of cells within the liver lesions
Exploiting inflammation for therapeutic gain in pancreatic cancer
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy associated with <5% 5-year survival, in which standard chemotherapeutics have limited benefit. The disease is associated with significant intra- and peritumoral inflammation and failure of protective immunosurveillance. Indeed, inflammatory signals are implicated in both tumour initiation and tumour progression. The major pathways regulating PDAC-associated inflammation are now being explored. Activation of leukocytes, and upregulation of cytokine and chemokine signalling pathways, both have been shown to modulate PDAC progression. Therefore, targeting inflammatory pathways may be of benefit as part of a multi-target approach to PDAC therapy. This review explores the pathways known to modulate inflammation at different stages of tumour development, drawing conclusions on their potential as therapeutic targets in PDAC
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Electron spin coherence exceeding seconds in high purity silicon
Silicon is undoubtedly one of the most promising semiconductor materials for
spin-based information processing devices. Its highly advanced fabrication
technology facilitates the transition from individual devices to large-scale
processors, and the availability of an isotopically-purified Si form
with no magnetic nuclei overcomes what is a main source of spin decoherence in
many other materials. Nevertheless, the coherence lifetimes of electron spins
in the solid state have typically remained several orders of magnitude lower
than what can be achieved in isolated high-vacuum systems such as trapped ions.
Here we examine electron spin coherence of donors in very pure Si
material, with a residual Si concentration of less than 50 ppm and donor
densities of per cm. We elucidate three separate mechanisms
for spin decoherence, active at different temperatures, and extract a coherence
lifetime up to 2 seconds. In this regime, we find the electron spin is
sensitive to interactions with other donor electron spins separated by ~200 nm.
We apply a magnetic field gradient in order to suppress such interactions and
obtain an extrapolated electron spin of 10 seconds at 1.8 K. These
coherence lifetimes are without peer in the solid state by several orders of
magnitude and comparable with high-vacuum qubits, making electron spins of
donors in silicon ideal components of a quantum computer, or quantum memories
for systems such as superconducting qubits.Comment: 18 pages, 4 figures, supplementary informatio
EMT-Induced Stemness and Tumorigenicity Are Fueled by the EGFR/Ras Pathway
10.1371/journal.pone.0070427PLoS ONE88-POLN
The use of electric fields for edible coatings and films development and production: A review
Edible films and coatings can provide additional
protection for food, while being a fully biodegradable,
environmentally friendly packaging system. A diversity of
raw materials used to produce edible coatings and films are
extracted from marine and agricultural sources, including
animals and plants. Electric fields processing holds advantage
in producing safe, wholesome and nutritious food.
Recently, the presence of a moderate electric field during
the preparation of edible coatings and films was shown to
influence their main properties, demonstrating its usefulness
to tailor edible films and coatings for specific applications.
This manuscript reviews the main aspects of the use of
electric fields in the production of edible films and coatings,
including the effect in their transport and mechanical
properties, solubility and microstructure.Fundação para a Ciência e a Tecnologia (FCT), Portugal.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil
Recent advances and perspectives on starch nanocomposites for packaging applications
Starch nanocomposites are popular and abundant materials in packaging sectors. The aim of this work is to review some of the most popular starch nanocomposite systems that have been used nowadays. Due to a wide range of applicable reinforcements, nanocomposite systems are investigated based on nanofiller type such as nanoclays, polysaccharides and carbonaceous nanofillers. Furthermore, the structures of starch and material preparation methods for their nanocomposites are also mentioned in this review. It is clearly presented that mechanical, thermal and barrier properties of plasticised starch can be improved with well-dispersed nanofillers in starch nanocomposites
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
- …