84 research outputs found

    Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter

    Full text link
    The design is suggested, and possible operation parameters are discussed, of an instrument to inspect a skin cancer tumour in the terahertz (THz) range, transferring the image into the infrared (IR) and making it visible with the help of standard IR camera. The central element of the device is the THz-to-IR converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold nanoparticles. The use of external THz source for irradiating the biological tissue sample is presumed. The converter's temporal characteristics enable its performance in a real-time scale. The details of design suited for the operation in transmission mode (in vitro) or on the human skin in reflection mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk, 3-5 June 201

    Global aspects of the space of 6D N = 1 supergravities

    Get PDF
    We perform a global analysis of the space of consistent 6D quantum gravity theories with N = 1 supersymmetry, including models with multiple tensor multiplets. We prove that for theories with fewer than T = 9 tensor multiplets, a finite number of distinct gauge groups and matter content are possible. We find infinite families of field combinations satisfying anomaly cancellation and admitting physical gauge kinetic terms for T > 8. We find an integral lattice associated with each apparently-consistent supergravity theory; this lattice is determined by the form of the anomaly polynomial. For models which can be realized in F-theory, this anomaly lattice is related to the intersection form on the base of the F-theory elliptic fibration. The condition that a supergravity model have an F-theory realization imposes constraints which can be expressed in terms of this lattice. The analysis of models which satisfy known low-energy consistency conditions and yet violate F-theory constraints suggests possible novel constraints on low-energy supergravity theories.Comment: 41 pages, 1 figur

    A Variational Deduction of Second Gradient Poroelasticity Part I: General Theory

    Get PDF
    Second gradient theories have to be used to capture how local micro heterogeneities macroscopically affect the behavior of a continuum. In this paper a configurational space for a solid matrix filled by an unknown amount of fluid is introduced. The Euler-Lagrange equations valid for second gradient poromechanics, generalizing those due to Biot, are deduced by means of a Lagrangian variational formulation. Starting from a generalized Clausius-Duhem inequality, valid in the framework of second gradient theories, the existence of a macroscopic solid skeleton Lagrangian deformation energy, depending on the solid strain and the Lagrangian fluid mass density as well as on their Lagrangian gradients, is proven.Comment: 20 page

    Wheat TaRab7 GTPase Is Part of the Signaling Pathway in Responses to Stripe Rust and Abiotic Stimuli

    Get PDF
    Small GTP-binding proteins function as regulators of specific intercellular fundamental biological processes. In this study, a small GTP-binding protein Rab7 gene, designated as TaRab7, was identified and characterized from a cDNA library of wheat leaves infected with Puccinia striiformis f. sp. tritici (Pst) the wheat stripe rust pathogen. The gene was predicted to encode a protein of 206 amino acids, with a molecular mass of 23.13 KDa and an isoeletric point (pI) of 5.13. Further analysis revealed the presence of a conserved signature that is characteristic of Rab7, and phylogenetic analysis demonstrated that TaRab7 has the highest similarity to a small GTP binding protein gene (BdRab7-like) from Brachypodium distachyon. Quantitative real-time PCR assays revealed that the expression of TaRab7 was higher in the early stage of the incompatible interactions between wheat and Pst than in the compatible interaction, and the transcription level of TaRab7 was also highly induced by environmental stress stimuli. Furthermore, knocking down TaRab7 expression by virus induced gene silencing enhanced the susceptibility of wheat cv. Suwon 11 to an avirulent race CYR23. These results imply that TaRab7 plays an important role in the early stage of wheat-stripe rust fungus interaction and in stress tolerance

    Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Get PDF
    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincar\'e supergravity.Comment: 30 page

    Consensus Conference on Clinical Management of pediatric Atopic Dermatitis

    Full text link

    INFLUENCE OF MATRIX ELEMENT EFFECTS IN DETERMINING THE DENSITY-OF-STATES FROM PHOTOEMISSION SPECTRA - CU-PD ALLOY

    No full text
    It is found that a change of the photoionization matrix element with the binding energy in the valence band can cause a substantial discrepancy between the density of states and the photoemission spectrum for d-band metals and alloys even in the x-ray photoemission spectroscopy regime. This is the main cause of the controversial discrepancy between photoemission spectra and theoretical density of states predicted in the Korringa-Kohn-Rostoker coherent-potential approximation for Cu-Pd alloys, rather than the local lattice relaxation around Pd atomic sites.open1128sciescopu
    corecore