1,056 research outputs found
Recommended from our members
The Daisho Peptides Mediate Drosophila Defense Against a Subset of Filamentous Fungi.
Fungal infections, widespread throughout the world, affect a broad range of life forms, including agriculturally relevant plants, humans, and insects. In defending against fungal infections, the fruit fly Drosophila melanogaster employs the Toll pathway to induce a large number of immune peptides. Some have been investigated, such as the antimicrobial peptides (AMPs) and Bomanins (Boms); many, however, remain uncharacterized. Here, we examine the role in innate immunity of two related peptides, Daisho1 and Daisho2 (formerly IM4 and IM14, respectively), found in hemolymph following Toll pathway activation. By generating a CRISPR/Cas9 knockout of both genes, Δdaisho, we find that the Daisho peptides are required for defense against a subset of filamentous fungi, including Fusarium oxysporum, but not other Toll-inducible pathogens, such as Enterococcus faecalis and Candida glabrata. Analysis of null alleles and transgenes revealed that the two daisho genes are each required for defense, although their functions partially overlap. Generating and assaying a genomic epitope-tagged Daisho2 construct, we detected interaction in vitro of Daisho2 peptide in hemolymph with the hyphae of F. oxysporum. Together, these results identify the Daisho peptides as a new class of innate immune effectors with humoral activity against a select set of filamentous fungi
Quantitative decision making for investment in global health intervention trials: case study of the NEWBORN study on emollient therapy in preterm infants in Kenya
Background: Partners from an NGO, academia, industry and government applied a tool originating in the private sector – Quantitative Decision Making (QDM) – to rigorously assess whether to invest in testing a global health intervention. The proposed NEWBORN study was designed to assess whether topical emollient therapy with sunflower seed oil in infants with very low birthweight <1500 g in Kenya would result in a significant reduction in neonatal mortality compared to standard of care.
Methods: The QDM process consisted of prior elicitation, modelling of prior distributions, and simulations to assess Probability of Success (PoS) via assurance calculations. Expert opinion was elicited on the probability that emollient therapy with sunflower seed oil will have any measurable benefit on neonatal mortality based on available evidence. The distribution of effect sizes was modelled and trial data simulated using Statistical Analysis System to obtain the overall assurance which represents the PoS for the planned study. A decision-making framework was then applied to characterise the ability of the study to meet pre-selected decision-making endpoints.
Resultsm There was a 47% chance of a positive outcome (defined as a significant relative reduction in mortality of ≥15%), a 45% chance of a negative outcome (defined as a significant relative reduction in mortality <10%), and an 8% chance of ending in the consider zone (ie, a mortality reduction of 10 to <15%) for infants <1500 g.
Conclusions: QDM is a novel tool from industry which has utility for prioritisation of investments in global health, complementing existing tools [eg, Child Health and Nutrition Research Initiative]. Results from application of QDM to the NEWBORN study suggests that it has a high probability of producing clear results. Findings encourage future formation of public-private partnerships for health
The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae
Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic
Innovative approaches to biologic development on the trail of CT-P13: biosimilars, value-added medicines, and biobetters.
The biosimilar concept is now well established. Clinical data accumulated pre- and post-approval have supported biosimilar uptake, in turn stimulating competition in the biologics market and increasing patient access to biologics. Following technological advances, other innovative biologics, such as "biobetters" or "value-added medicines," are now reaching the market. These innovative biologics differ from the reference product by offering additional clinical or non-clinical benefits. We discuss these innovative biologics with reference to CT-P13, initially available as an intravenous (IV) biosimilar of reference infliximab. A subcutaneous (SC) formulation, CT-P13 SC, has now been developed. Relative to CT-P13 IV, CT-P13 SC offers clinical benefits in terms of pharmacokinetics, with comparable efficacy, safety, and immunogenicity, as well as increased convenience for patients and reduced demands on healthcare system resources. As was once the case for biosimilars, nomenclature and regulatory pathways for innovative biologics require clarification to support their uptake and ultimately benefit patients
Psychological determinants of whole-body endurance performance
Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research.
Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research.
Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants.
Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance.
Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described
Recommended from our members
Do emotional difficulties and peer problems hew together from childhood to adolescence? The case of children with a history of developmental language disorder (DLD)
Children and adolescents with developmental language disorder (DLD) are, overall, vulnerable to difficulties in emotional adjustment and in peer relations. However, previous research has shown that different subgroups follow different trajectories in respect of quality of peer relations. Less is known of the trajectories of emotional development. We consider here the possibility that development in these two domains is interrelated: that is, the trajectories of emotional and peer problems will proceed in parallel. We conducted longitudinal joint trajectories analyses of emotional and peer relations in a sample of young people identified as having DLD at age 7 years and seen at intervals up to 16 years. Potential influences on joint trajectory group membership were examined. Findings revealed five distinct joint trajectories. Emotional and peer difficulties do hew together from childhood to adolescence for just over half of the sample, but not all. The variables most clearly associated with group membership were pragmatic language ability, prosociality and parental mental health. This is the first study to examine joint longitudinal trajectories of emotional and peer difficulties in individuals with DLD. We demonstrate that development in individuals with DLD is heterogeneous and identify three key variables associated with personal and social adjustment from childhood to adolescence. Theoretical and clinical implications of these findings are discussed
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
Performance of random forest when SNPs are in linkage disequilibrium
<p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) may be correlated due to linkage disequilibrium (LD). Association studies look for both direct and indirect associations with disease loci. In a Random Forest (RF) analysis, correlation between a true risk SNP and SNPs in LD may lead to diminished variable importance for the true risk SNP. One approach to address this problem is to select SNPs in linkage equilibrium (LE) for analysis. Here, we explore alternative methods for dealing with SNPs in LD: change the tree-building algorithm by building each tree in an RF only with SNPs in LE, modify the importance measure (IM), and use haplotypes instead of SNPs to build a RF.</p> <p>Results</p> <p>We evaluated the performance of our alternative methods by simulation of a spectrum of complex genetics models. When a haplotype rather than an individual SNP is the risk factor, we find that the original Random Forest method performed on SNPs provides good performance. When individual, genotyped SNPs are the risk factors, we find that the stronger the genetic effect, the stronger the effect LD has on the performance of the original RF. A revised importance measure used with the original RF is relatively robust to LD among SNPs; this revised importance measure used with the revised RF is sometimes inflated. Overall, we find that the revised importance measure used with the original RF is the best choice when the genetic model and the number of SNPs in LD with risk SNPs are unknown. For the haplotype-based method, under a multiplicative heterogeneity model, we observed a decrease in the performance of RF with increasing LD among the SNPs in the haplotype.</p> <p>Conclusion</p> <p>Our results suggest that by strategically revising the Random Forest method tree-building or importance measure calculation, power can increase when LD exists between SNPs. We conclude that the revised Random Forest method performed on SNPs offers an advantage of not requiring genotype phase, making it a viable tool for use in the context of thousands of SNPs, such as candidate gene studies and follow-up of top candidates from genome wide association studies.</p
Integrating transposable elements in the 3D genome
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome
- …