35 research outputs found
Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature America for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 12 (2009): 864-871, doi:10.1038/nn.2346.Selected vulnerability of neurons in Huntington’s disease (HD) suggests alterations in a cellular
process particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt)
inhibits fast axonal transport (FAT) in various cellular and animal HD models (mouse and squid),
but the molecular basis of this effect remains unknown. Here we show that polyQ-Htt inhibits FAT
through a mechanism involving activation of axonal JNK. Accordingly, increased activation of JNK
was observed in vivo in cellular and animal HD models. Additional experiments indicate that
polyQ-Htt effects on FAT are mediated by the neuron-specific JNK3, and not ubiquitously
expressed JNK1, providing a molecular basis for neuron-specific pathology in HD. Mass
spectrometry identified a residue in the kinesin-1 motor domain phosphorylated by JNK3, and this
modification reduces kinesin-1 binding to microtubules. These data identify JNK3 as a critical
mediator of polyQ-Htt toxicity and provides a molecular basis for polyQ-Htt-induced inhibition of
FAT.This work was supported by 2007/2008 MBL summer fellowship to GM; an HDSA
grant to GM; NIH grants MH066179 to GB; and ALSA, Muscular Dystrophy Association, and NIH
(NS23868, NS23320, NS41170) grants to STB
The Confrontation between General Relativity and Experiment
The status of experimental tests of general relativity and of theoretical
frameworks for analysing them is reviewed. Einstein's equivalence principle
(EEP) is well supported by experiments such as the Eotvos experiment, tests of
special relativity, and the gravitational redshift experiment. Future tests of
EEP and of the inverse square law are searching for new interactions arising
from unification or quantum gravity. Tests of general relativity at the
post-Newtonian level have reached high precision, including the light
deflection, the Shapiro time delay, the perihelion advance of Mercury, and the
Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected
in an amount that agrees with general relativity to better than half a percent
using the Hulse-Taylor binary pulsar, and other binary pulsar systems have
yielded other tests, especially of strong-field effects. When direct
observation of gravitational radiation from astrophysical sources begins, new
tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article
originally published in 2001; final published version incorporating referees'
suggestion