34 research outputs found

    Advanced adenoma diagnosis with FDG PET in a visibly normal mucosa: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An accurate, early diagnosis and treatment of adenomatous polyp can curtail progression to colorectal cancer. F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) reveals the biochemical changes associated with the development of many cancers which precede the appearance of gross anatomical changes that may be visualized during surgical resection or via imaging with MR or CT.</p> <p>Intervention</p> <p>We detail the history of a 64 year old female who had a whole-body FDG PET scan as a part of an employee wellness program. A dose of 12.2 mCi of F-18 labeled FDG was administered.</p> <p>Results</p> <p>A focal cecal uptake with a standardized uptake value (SUV) of 8.9 was found on the PET scan. Conversely, only normal mucosa was observed during a colonoscopy done 2 months after the PET scan. Motivated by the PET scan finding, the colonoscopist performed a biopsy which revealed a villous adenoma without high grade dysplasia. Pathology from tissue extracted during an exploratory laparatomy completed one month later found the lesion to be a villous adenoma with high grade dysplasia.</p> <p>Conclusion</p> <p>Whole-body FDG PET scan revealed the biochemical metabolic changes in malignancy that preceded the appearance of any gross anatomical abnormality. A positive FDG PET scan indicative of colorectal cancer should be followed up with a colonoscopy and biopsy even in a visibly normal mucosa.</p

    Is exposure to formaldehyde in air causally associated with leukemia?—A hypothesis-based weight-of-evidence analysis

    Get PDF
    Recent scientific debate has focused on the potential for inhaled formaldehyde to cause lymphohematopoietic cancers, particularly leukemias, in humans. The concern stems from certain epidemiology studies reporting an association, although particulars of endpoints and dosimetry are inconsistent across studies and several other studies show no such effects. Animal studies generally report neither hematotoxicity nor leukemia associated with formaldehyde inhalation, and hematotoxicity studies in humans are inconsistent. Formaldehyde's reactivity has been thought to preclude systemic exposure following inhalation, and its apparent inability to reach and affect the target tissues attacked by known leukemogens has, heretofore, led to skepticism regarding its potential to cause human lymphohematopoietic cancers. Recently, however, potential modes of action for formaldehyde leukemogenesis have been hypothesized, and it has been suggested that formaldehyde be identified as a known human leukemogen. In this article, we apply our hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the large body of evidence regarding formaldehyde and leukemogenesis, attending to how human, animal, and mode-of-action results inform one another. We trace the logic of inference within and across all studies, and articulate how one could account for the suite of available observations under the various proposed hypotheses. Upon comparison of alternative proposals regarding what causal processes may have led to the array of observations as we see them, we conclude that the case fora causal association is weak and strains biological plausibility. Instead, apparent association between formaldehyde inhalation and leukemia in some human studies is better interpreted as due to chance or confounding

    Chemical carcinogenesis

    Full text link
    corecore