74 research outputs found

    Large head metal-on-metal cementless total hip arthroplasty versus 28mm metal-on-polyethylene cementless total hip arthroplasty: design of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis of the hip is successfully treated by total hip arthroplasty with metal-on-polyethylene articulation. Polyethylene wear debris can however lead to osteolysis, aseptic loosening and failure of the implant. Large head metal-on-metal total hip arthroplasty may overcome polyethylene wear induced prosthetic failure, but can increase systemic cobalt and chromium ion concentrations. The objective of this study is to compare two cementless total hip arthroplasties: a conventional 28 mm metal-on-polyethylene articulation and a large head metal-on-metal articulation. We hypothesize that the latter arthroplasties show less bone density loss and higher serum metal ion concentrations. We expect equal functional scores, greater range of motion, fewer dislocations, fewer periprosthetic radiolucencies and increased prosthetic survival with the metal-on-metal articulation.</p> <p>Methods</p> <p>A randomized controlled trial will be conducted. Patients to be included suffer from non-inflammatory degenerative joint disease of the hip, are aged between 18 and 80 and are admitted for primary cementless unilateral total hip arthroplasty. Patients in the metal-on-metal group will receive a cementless titanium alloy acetabular component with a cobalt-chromium liner and a cobalt-chromium femoral head varying from 38 to 60 mm. Patients in the metal-on-polyethylene group will receive a cementless titanium alloy acetabular component with a polyethylene liner and a 28 mm cobalt-chromium femoral head. We will assess acetabular bone mineral density by dual energy x-ray absorptiometry (DEXA), serum ion concentrations of cobalt, chromium and titanium, self reported functional status (Oxford hip score), physician reported functional status and range of motion (Harris hip score), number of dislocations and prosthetic survival. Measurements will take place preoperatively, perioperatively, and postoperatively (6 weeks, 1 year, 5 years and 10 years).</p> <p>Discussion</p> <p>Superior results of large head metal-on-metal total hip arthroplasty over conventional hip arthroplasty have been put forward by experts, case series and the industry, but to our knowledge there is no randomized controlled evidence.</p> <p>Conclusion</p> <p>This randomized controlled study has been designed to test whether large head metal-on-metal cementless total hip arthroplasty leads to less periprosthetic bone density loss and higher serum metal ion concentrations compared to 28 mm metal-on-polyethylene cementless total hip arthroplasty.</p> <p>Trial registration</p> <p>Netherlands Trial Registry NTR1399</p

    Is there evidence for accelerated polyethylene wear in uncemented compared to cemented acetabular components? A systematic review of the literature

    Get PDF
    Joint arthroplasty registries show an increased rate of aseptic loosening in uncemented acetabular components as compared to cemented acetabular components. Since loosening is associated with particulate wear debris, we postulated that uncemented acetabular components demonstrate a higher polyethylene wear rate than cemented acetabular components in total hip arthroplasty. We performed a systematic review of the peer-reviewed literature, comparing the wear rate in uncemented and cemented acetabular components in total hip arthroplasty. Studies were identified using MEDLINE (PubMed), EMBASE and the Cochrane Central Register of Controlled Trials. Study quality was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The search resulted in 425 papers. After excluding duplicates and selection based on title and abstracts, nine studies were found eligible for further analysis: two randomised controlled trials, and seven observational studies. One randomised controlled trial found a higher polyethylene wear rate in uncemented acetabular components, while the other found no differences. Three out of seven observational studies showed a higher polyethylene wear in uncemented acetabular component fixation; the other four studies did not show any differences in wear rates. The available evidence suggests that a higher annual wear rate may be encountered in uncemented acetabular components as compared to cemented components

    Wear of highly crosslinked polyethylene acetabular components: a review of RSA studies

    Get PDF
    Background and purpose - Wear rates of highly crosslinked polyethylene (XLPE) acetabular components have varied considerably between different published studies. This variation is in part due to the different techniques used to measure wear and to the errors inherent in measuring the relatively low amounts of wear in XLPE bearings. We undertook a scoping review of studies that have examined the in vivo wear of XLPE acetabular components using the most sensitive method available, radiostereometric analysis (RSA). Methods - A systematic search of the PubMed, Scopus, and Cochrane databases was performed to identify published studies in which RSA was used to measure wear of XLPE components in primary total hip arthroplasty (THA). Results - 18 publications examined 12 primary THA cohorts, comprising only 260 THAs at 2-10 years of follow-up. The mean or median proximal wear rate reported ranged from 0.00 to 0.06 mm/year. However, differences in the manner in which wear was determined made it difficult to compare some studies. Furthermore, differences in RSA methodology between studies, such as the use of supine or standing radiographs and the use of beaded or unbeaded reference segments, may limit future meta-analyses examining the effect of patient and implant variables on wear rates. Interpretation - This scoping review confirmed the low wear rates of XLPE in THA, as measured by RSA. We make recommendations to enhance the standardization of reporting of RSA wear results, which will facilitate early identification of poorly performing implants and enable a better understanding of the effects of surgical and patient factors on wear.Stuart A Callary, Lucian B Solomon, Oksana T Holubowycz, David G Campbell, Zachary Munn, and Donald W Howi

    Effects of metal-on-metal wear on the host immune system and infection in hip arthroplasty

    Get PDF
    Methods We reviewed the available literature on the influence of degradation products of MOM bearings in total hip arthroplasties on infection risk. Results Wear products were found to influence the risk of infection by hampering the immune system, by inhibiting or accelerating bacterial growth, and by a possible antibiotic resistance and heavy metal co-selection mechanism. Interpretation Whether or not the combined effects of MOM wear products make MOM bearings less or more prone to infection requires investigation in the near future

    Diagnostic guidelines for the histological particle algorithm in the periprosthetic neo-synovial tissue

    Get PDF
    Background The identification of implant wear particles and non-implant related particles and the characterization of the inflammatory responses in the periprosthetic neo-synovial membrane, bone, and the synovial-like interface membrane (SLIM) play an important role for the evaluation of clinical outcome, correlation with radiological and implant retrieval studies, and understanding of the biological pathways contributing to implant failures in joint arthroplasty. The purpose of this study is to present a comprehensive histological particle algorithm (HPA) as a practical guide to particle identification at routine light microscopy examination. Methods The cases used for particle analysis were selected retrospectively from the archives of two institutions and were representative of the implant wear and non-implant related particle spectrum. All particle categories were described according to their size, shape, colour and properties observed at light microscopy, under polarized light, and after histochemical stains when necessary. A unified range of particle size, defined as a measure of length only, is proposed for the wear particles with five classes for polyethylene (PE) particles and four classes for conventional and corrosion metallic particles and ceramic particles. Results All implant wear and non-implant related particles were described and illustrated in detail by category. A particle scoring system for the periprosthetic tissue/SLIM is proposed as follows: 1) Wear particle identification at light microscopy with a two-step analysis at low (× 25, × 40, and × 100) and high magnification (× 200 and × 400); 2) Identification of the predominant wear particle type with size determination; 3) The presence of non-implant related endogenous and/or foreign particles. A guide for a comprehensive pathology report is also provided with sections for macroscopic and microscopic description, and diagnosis. Conclusions The HPA should be considered a standard for the histological analysis of periprosthetic neo-synovial membrane, bone, and SLIM. It provides a basic, standardized tool for the identification of implant wear and non-implant related particles at routine light microscopy examination and aims at reducing intra-observer and inter-observer variability to provide a common platform for multicentric implant retrieval/radiological/histological studies and valuable data for the risk assessment of implant performance for regional and national implant registries and government agencies
    corecore