19 research outputs found

    Methods to Study Centrosomes and Cilia in Drosophila

    Get PDF
    The deposited item is a book chapter and is part of the series " Methods in Molecular Biology book series ([MIMB, volume 1454]) published by the publisher Humana Press.The deposited book chapter is a pre-print version and hasn't been submitted to peer reviewing.There is no public supplementary material available for this publication.This publication hasn't any creative commons license associated.Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception, olfaction, and hearing. The fly possesses a large diversity of ciliary structures and assembly modes, such as motile, immotile, and intraflagellar transport (IFT)-independent or IFT-dependent assembly. Moreover, all the diverse ciliated cells harbor centrioles at the base of the cilia, called basal bodies, making the fly an attractive model to better understand the biology of this organelle. This chapter describes protocols to visualize centrosomes and cilia by fluorescence and electron microscopy.Fundação Portuguesa para a Ciência e Tecnologia grants: (SFRH/BPD/87479/2012, SFRH/BD/52176/2013); EMBO installation grant; ERC starting grant.info:eu-repo/semantics/publishedVersio

    CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila

    Get PDF
    Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.ope

    The novel gene twenty-four defines a critical translational step in the Drosophila clock

    No full text
    Daily oscillations of gene expression underlie circadian behaviours in multicellular organisms(1). While attention has been focused on transcriptional and post-translational mechanisms(1-3), other post-transcriptional modes have been less clearly delineated. Here we report mutants of a novel Drosophila gene twenty-four (tyf) that show weak behavioural rhythms. Weak rhythms are accompanied by marked reductions in the levels of the clock protein Period (PER) as well as more modest effects on Timeless (TIM). Nonetheless, PER induction in pacemaker neurons can rescue tyf mutant rhythms. TYF associates with a 5'-cap-binding complex, poly(A)-binding protein (PABP), as well as per and tim transcripts. Furthermore, TYF activates reporter expression when tethered to reporter messenger RNA even in vitro. Taken together, these data indicate that TYF potently activates PER translation in pacemaker neurons to sustain robust rhythms, revealing a new and important role for translational control in the Drosophila circadian clock.close252

    PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila

    No full text
    International audienceMorning and evening circadian oscillators control the bimodal activity of Drosophila in light-dark cycles. The lateral neurons evening oscillator (LN-EO) is important for promoting diurnal activity at dusk. We found that the LN-EO autonomously synchronized to light-dark cycles through either the cryptochrome (CRY) that it expressed or the visual system. In conditions in which CRY was not activated, flies depleted for pigment-dispersing factor (PDF) or its receptor lost the evening activity and displayed reversed PER oscillations in the LN-EO. Rescue experiments indicated that normal PER cycling and the presence of evening activity relied on PDF secretion from the large ventral lateral neurons and PDF receptor function in the LN-EO. The LN-EO thus integrates light inputs and PDF signaling to control Drosophila diurnal behavior, revealing a new clock-independent function for PDF
    corecore