133 research outputs found
Receptor-Induced Dilatation in the Systemic and Intrarenal Adaptation to Pregnancy in Rats
Normal pregnancy is associated with systemic and intrarenal vasodilatation resulting in an increased glomerular filtration rate. This adaptive response occurs in spite of elevated circulating levels of angiotensin II (Ang II). In the present study, we evaluated the potential mechanisms responsible for this adaptation. The reactivity of the mesangial cells (MCs) cultured from 14-day-pregnant rats to Ang II was measured through changes in the intracellular calcium concentration ([Cai]). The expression levels of inducible nitric oxide synthase (iNOS), the Ang II-induced vasodilatation receptor AT2, and the relaxin (LGR7) receptor were evaluated in cultured MCs and in the aorta, renal artery and kidney cortex by real time-PCR. The intrarenal distribution of LGR7 was further analyzed by immunohistochemistry. The MCs displayed a relative insensitivity to Ang II, which was paralleled by an impressive increase in the expression level of iNOS, AT2 and LGR7. These results suggest that the MCs also adapt to the pregnancy, thereby contributing to the maintenance of the glomerular surface area even in the presence of high levels of Ang II. The mRNA expression levels of AT2 and LGR7 also increased in the aorta, renal artery and kidney of the pregnant animals, whereas the expression of the AT1 did not significantly change. This further suggests a role of these vasodilatation-induced receptors in the systemic and intrarenal adaptation during pregnancy. LGR7 was localized in the glomeruli and on the apical membrane of the tubular cells, with stronger labeling in the kidneys of pregnant rats. These results suggest a role of iNOS, AT2, and LGR7 in the systemic vasodilatation and intrarenal adaptation to pregnancy and also suggest a pivotal role for relaxin in the tubular function during gestation
Lambs with Scrapie Susceptible Genotypes Have Higher Postnatal Survival
BACKGROUND: Prion protein (PrP) alleles associated with scrapie susceptibility persist in many sheep populations even with high frequencies despite centuries of selection against them. This suggests that scrapie susceptibility alleles have a pleiotropic effect or are associated with fitness or other traits that have been subject to selection. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped all lambs in two scrapie-free Scottish Blackface sheep flocks for polymorphisms at codons 136, 154 and 171 of the PrP gene. We tested potential associations of the PrP genotype with lamb viability at birth and postnatal survival using a complementary log-log link function and a Weibull proportional hazard model, respectively. Here we show there is an association between PrP genotype, as defined by polymorphisms at codons 154 ad 171, and postnatal lamb survival in the absence of scrapie. Sheep carrying the wild-type ARQ allele have higher postnatal survival rates than sheep carrying the more scrapie-resistant alleles (ARR or AHQ). CONCLUSION: The PrP genotypes associated with higher susceptibility to scrapie are associated with improved postnatal survival in the absence of the disease. This association helps to explain the existence, and in many instances the high frequency, of the ARQ allele in sheep populations
Transmission Heterogeneity and Control Strategies for Infectious Disease Emergence
The control of emergence and spread of infectious diseases depends critically on the details of the genetic makeup of pathogens and hosts, their immunological, behavioral and ecological traits, and the pattern of temporal and spatial contacts among the age/stage-classes of susceptible and infectious host individuals.We show that failing to acknowledge the existence of heterogeneities in the transmission rate among age/stage-classes can make traditional eradication and control strategies ineffective, and in some cases, policies aimed at controlling pathogen emergence can even increase disease incidence in the host. When control strategies target for reduction in numbers those subsets of the population that effectively limit the production of new susceptible individuals, then control can produce a flush of new susceptibles entering the population. The availability of a new cohort of susceptibles may actually increase disease incidence. We illustrate these general points using Classical Swine Fever as a reference disease.Negative effects of culling are robust to alternative formulations of epidemiological processes and underline the importance of better assessing transmission structure in the design of wildlife disease control strategies
Polymorphisms of the prion protein gene and their effects on litter size and risk evaluation for scrapie in Chinese Hu sheep
It is well known that scrapie is a fatal, neurodegenerative disease in sheep and goat, which belongs to the group of transmissible spongiform encephalopathies (TSEs) or prion diseases. It has been confirmed that the polymorphisms of prion protein gene (PRNP) at codons 136, 154, and 171 have strong relationship with scrapie in sheep. In the present study, nine polymorphisms of PRNP at codons 136, 154, and 171 and other six loci (at codons 101, 112, 127, 137, 138, and 152) were detected in 180 Chinese Hu sheep. All the alleles at codons 136, 154, and 171 have been identified and resulted in three new genotypes. The frequencies of predominant alleles were 85% (A136), 99.40% (R154), and 37.78% (Q171), respectively. The predominant haplotype ARQ has a relatively high frequency of 57.77%. The frequencies of dominant genotypes of ARR/ARQ and ARQ/ARQ were 30 and 26.67%, respectively. Three new found genotypes named ARQ/TRK, ARQ/TRR, and TRR/TRQ had the same lower frequencies (0.56%). The relationship of PRNP genotype with scrapie risk and litter size showed that the predominant genotypes are corresponded to the risk score of R1 (1.67%), R2 (32.22%), and R3 (42.22%). Just at the first parity, the individuals with ARH/ARH genotype had significantly larger litter size than the mean value and those with ARQ/ARQ and ARR/ARQ genotypes. In short, this study provided preliminary information about alleles and genotypes of PRNP in Chinese Hu sheep. It could be concluded that Hu sheep has a low susceptibility to natural scrapie, and the predominant PRNP genotype at least has no significant effect on litter size
Association of a Bovine Prion Gene Haplotype with Atypical BSE
Background: Atypical bovine spongiform encephalopathies (BSEs) are recently recognized prion diseases of cattle. Atypical BSEs are rare; approximately 30 cases have been identified worldwide. We tested prion gene (PRNP) haplotypes for an association with atypical BSE.
Methodology/Principle Findings: Haplotype tagging polymorphisms that characterize PRNP haplotypes from the promoter region through the three prime untranslated region of exon 3 (25.2 kb) were used to determine PRNP haplotypes of six available atypical BSE cases from Canada, France and the United States. One or two copies of a distinct PRNP haplotype were identified in five of the six cases (p = 1.36×10-4, two-tailed Fisher’s exact test; CI95% 0.263–0.901, difference between proportions). The haplotype spans a portion of PRNP that includes part of intron 2, the entire coding region of exon 3 and part of the three prime untranslated region of exon 3 (13 kb).
Conclusions/Significance: This result suggests that a genetic determinant in or near PRNP may influence susceptibility of cattle to atypical BSE
Sin Nombre Virus and Rodent Species Diversity: A Test of the Dilution and Amplification Hypotheses
BACKGROUND:Species diversity is proposed to greatly impact the prevalence of pathogens. Two predominant hypotheses, the "Dilution Effect" and the "Amplification Effect", predict divergent outcomes with respect to the impact of species diversity. The Dilution Effect predicts that pathogen prevalence will be negatively correlated with increased species diversity, while the Amplification Effect predicts that pathogen prevalence will be positively correlated with diversity. For many host-pathogen systems, the relationship between diversity and pathogen prevalence has not be empirically examined. METHODOLOGY/PRINCIPAL FINDINGS:We tested the Dilution and Amplification Effect hypotheses by examining the prevalence of Sin Nombre virus (SNV) with respect to diversity of the nocturnal rodent community. SNV is directly transmitted primarily between deer mice (Peromyscus maniculatus). Using mark-recapture sampling in the Spring and Fall of 2003-2005, we measured SNV prevalence in deer mice at 16 landscape level sites (3.1 hectares each) that varied in rodent species diversity. We explored several mechanisms by which species diversity may affect SNV prevalence, including reduced host density, reduced host persistence, the presence of secondary reservoirs and community composition. We found a negative relationship between species diversity and SNV prevalence in deer mice, thereby supporting the Dilution Effect hypothesis. Deer mouse density and persistence were lower at sites with greater species diversity; however, only deer mouse persistence was positively correlated with SNV prevalence. Pinyon mice (P. truei) may serve as dilution agents, having a negative effect on prevalence, while kangaroo rats (Dipodomys ordii), may have a positive effect on the prevalence of SNV, perhaps through effects on deer mouse behavior. CONCLUSIONS/SIGNIFICANCE:While previous studies on host-pathogen systems have found patterns of diversity consistent with either the Dilution or Amplification Effects, the mechanisms by which species diversity influences prevalence have not been investigated. Our study indicates that changes in host persistence, coupled with interspecific interactions, are important mechanisms through which diversity may influence patterns of pathogens. Our results reveal the complexity of rodent community interactions with respect to SNV dynamics
Levels of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and chlorinated pesticides, have been shown to have many adverse human health effects. These contaminants therefore may pose a risk to Alaska Natives that follow a traditional diet high in marine mammals and fish, in which POPs bioaccumulate.This study examined the levels of PCBs and three pesticides [p, p'-DDE, mirex, and hexachlorobenzene (HCB)] in muscle tissue from nine fish species from several locations around the Aleutian Islands of Alaska. The highest median PCB level was found in rock sole (Lepidopsetta bilineata, 285 ppb, wet weight), while the lowest level was found in rock greenling (Hexagrammos lagocephalus, 104 ppb, wet weight). Lipid adjusted PCB values were also calculated and significant interspecies differences were found. Again, rock sole had the highest level (68,536 ppb, lipid weight). Concerning the PCB congener patterns, the more highly chlorinated congeners were most common as would be expected due to their greater persistence. Among the pesticides, p, p'-DDE generally dominated, and the highest level was found in sockeye salmon (Oncorhynchus nerka, 6.9 ppb, wet weight). The methodology developed by U.S. Environmental Protection Agency (USEPA) was used to calculate risk-based consumption limits for the analyzed fish species. For cancer health endpoints for PCBs, all species would trigger strict advisories of between two and six meals per year, depending upon species. For noncancer effects by PCBs, advisories of between seven and twenty-two meals per year were triggered. None of the pesticides triggered consumption limits.The fish analyzed, mainly from Adak, contain significant concentrations of POPs, in particular PCBs, which raises the question whether these fish are safe to eat, particularly for sensitive populations. However when assessing any risk of the traditional diet, one must also consider the many health and cultural benefits from eating fish
Fix Your Eyes in the Space You Could Reach: Neurons in the Macaque Medial Parietal Cortex Prefer Gaze Positions in Peripersonal Space
Interacting in the peripersonal space requires coordinated arm and eye movements to visual targets in depth. In primates, the medial posterior parietal cortex (PPC) represents a crucial node in the process of visual-to-motor signal transformations. The medial PPC area V6A is a key region engaged in the control of these processes because it jointly processes visual information, eye position and arm movement related signals. However, to date, there is no evidence in the medial PPC of spatial encoding in three dimensions. Here, using single neuron recordings in behaving macaques, we studied the neural signals related to binocular eye position in a task that required the monkeys to perform saccades and fixate targets at different locations in peripersonal and extrapersonal space. A significant proportion of neurons were modulated by both gaze direction and depth, i.e., by the location of the foveated target in 3D space. The population activity of these neurons displayed a strong preference for peripersonal space in a time interval around the saccade that preceded fixation and during fixation as well. This preference for targets within reaching distance during both target capturing and fixation suggests that binocular eye position signals are implemented functionally in V6A to support its role in reaching and grasping
Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia
Several structural brain abnormalities have been associated with aggression in patients with schizophrenia. However, little is known about shared and distinct abnormalities underlying aggression in these subjects and non-psychotic violent individuals. We applied a region-of interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic versus psychotic), adjusted for substance abuse, age, academic achievement and negative psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus and smaller left thalamus volumes. This was particularly the case for non-violent individuals diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size. With regard to left amygdala, we found an interaction between violence and diagnosis. More specifically, we report a double dissociation with smaller amygdala size linked to violence in non-psychotic individuals, while for psychotic patients smaller size was linked to non-violence. Importantly, the double dissociation appeared to be mostly driven by substance abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individuals were largely accounted for by substance abuse. This might be an indication that the association between amygdala reduction and violence is mediated by substance abuse. Our results indicate the importance of structural abnormalities in aggressive individuals
Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls
- …