15 research outputs found
Microwave assisted synthesis of barium zirconium titanate nanopowders
This article is closed access.The paper reports the synthesis, structural and high frequency dielectric properties of Ba(Zr x Ti1−x )O3,BZT, nanopowders where x = 0, 0.1, 0.2, 0.3. These powders were synthesized using both microwave assisted and conventional heating, with the former requiring lower temperature and shorter times compared to the latter, viz., 700 °C for 30 min versus 900 °C for 5 h. The synthesized nanopowders were characterized using X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy, BET surface area analysis, differential scanning calorimetry and high frequency dielectric measurements. All the microwave synthesized BZT compositions were found to have well crystallized, finer nanoparticles with less agglomeration and higher dielectric permittivity compared to the conventionally prepared powders. The rapidity and less demanding processing conditions associated with the microwave assisted method augers well for the general applicability of the technique for the production of nanocrystalline powders
Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity
A low-temperature fabrication method for highly porous bioactive scaffolds was developed. The two-step method involved the foaming of tricalcium silicate cement paste and hydration to form calcium silicate hydrate and calcium hydroxide. Scaffolds with a combination of interconnected macro- and micro-sized pores were fabricated by making use of the decomposition of a hydrogen peroxide (H2O2) solution that acted as a foaming agent and through the hydration of tricalcium silicate cement. It was found possible to control the porosity and pore sizes by adjusting the concentration of the H2O2 solution. The in vitro bioactivity of the highly porous scaffolds was investigated by immersion in simulated body fluid (SBF) for 7 days. Hydroxyapatite (HAp) was formed on the surface of the scaffolds. Their bioactivity could be expected to be as good as that of tricalcium silicate cement, making the material competent for the bone tissue engineering application.Mechanical, Maritime and Materials Engineerin