57 research outputs found

    TCF7L2 variant genotypes and type 2 diabetes risk in Brazil: significant association, but not a significant tool for risk stratification in the general population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic polymorphisms of the <it>TCF7L2 </it>gene are strongly associated with large increments in type 2 diabetes risk in different populations worldwide. In this study, we aimed to confirm the effect of the <it>TCF7L2 </it>polymorphism <it>rs7903146 </it>on diabetes risk in a Brazilian population and to assess the use of this genetic marker in improving diabetes risk prediction in the general population.</p> <p>Methods</p> <p>We genotyped the single nucleotide polymorphisms (SNP) rs7903146 of the <it>TCF7L2 </it>gene in 560 patients with known coronary disease enrolled in the MASS II (Medicine, Angioplasty, or Surgery Study) Trial and in 1,449 residents of Vitoria, in Southeast Brazil. The associations of this gene variant to diabetes risk and metabolic characteristics in these two different populations were analyzed. To access the potential benefit of using this marker for diabetes risk prediction in the general population we analyzed the impact of this genetic variant on a validated diabetes risk prediction tool based on clinical characteristics developed for the Brazilian general population.</p> <p>Results</p> <p>SNP rs7903146 of the <it>TCF7L2 </it>gene was significantly associated with type 2 diabetes in the MASS-II population (OR = 1.57 per T allele, p = 0.0032), confirming, in the Brazilian population, previous reports of the literature. Addition of this polymorphism to an established clinical risk prediction score did not increased model accuracy (both area under ROC curve equal to 0.776).</p> <p>Conclusion</p> <p><it>TCF7L2 </it>rs7903146 T allele is associated with a 1.57 increased risk for type 2 diabetes in a Brazilian cohort of patients with known coronary heart disease. However, the inclusion of this polymorphism in a risk prediction tool developed for the general population resulted in no improvement of performance. This is the first study, to our knowledge, that has confirmed this recent association in a South American population and adds to the great consistency of this finding in studies around the world. Finally, confirming the biological association of a genetic marker does not guarantee improvement on already established screening tools based solely on demographic variables.</p

    Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium

    Get PDF
    BACKGROUND Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation. CONCLUSION This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts

    From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?

    Get PDF

    Increased angiotensin-converting enzyme activity in the left ventricle after infarction

    No full text
    An increase in angiotensin-converting enzyme (ACE) activity has been observed in the heart after myocardial infarction (MI). Since most studies have been conducted in chronically infarcted individuals exhibiting variable degrees of heart failure, the present study was designed to determine ACE activity in an earlier phase of MI, before heart failure development. MI was produced in 3-month old male Wistar rats by ligation of the anterior branches of the left coronary artery, control rats underwent sham surgery and the animals were studied 7 or 15 days later. Hemodynamic data obtained for the anesthetized animals showed normal values of arterial blood pressure and of end-diastolic pressure in the right and left ventricular cavities of MI rats. Right and left ventricular (RV, LV) muscle and scar tissue homogenates were prepared to determine ACE activity in vitro by measuring the velocity of His-Leu release from the synthetic substrate Hyp-His-Leu. ACE activity was corrected to the tissue wet weight and is reported as nmol His-Leu g-1 min-1. No significant change in ACE activity in the RV homogenates was demonstrable. A small nonsignificant increase of ACE activity (11 &amp;plusmn; 9%; P0.05) was observed 7 days after MI in the surviving left ventricular muscle. Two weeks after surgery, however, ACE activity was 46 &amp;plusmn; 11% (P<0.05) higher in infarcted rats compared to sham-operated rats. The highest ACE activity was demonstrable in the scar tissue homogenate. In rats studied two weeks after surgery, ACE activity in the LV muscle increased from 105 &amp;plusmn; 7 nmol His-Leu g-1 min-1 in control hearts to 153 &amp;plusmn; 11 nmol His-Leu g-1 min-1 (P<0.05) in the remaining LV muscle of MI rats and to 1051 &amp;plusmn; 208 nmol His-Leu g-1 min-1 (P<0.001) in the fibrous scar. These data indicate that ACE activity increased in the heart after infarction before heart failure was demonstrable by hemodynamic measurements. Since the blood vessels of the scar drain to the remaining LV myocardium, the high ACE activity present in the fibrous scar may increase the angiotensin II concentration and decrease bradykinin in the cardiac tissues surrounding the infarcted area. The increased angiotensin II in the fibrous scar may contribute to the reactive fibrosis and hypertrophy in the left ventricular muscle surviving infarctio
    • …
    corecore