251 research outputs found
Measurement of the Relative Branching Fraction of to Charged and Neutral B-Meson Pairs
We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to
determine the production ratio of charged to neutral B-meson pairs produced at
the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ ->
J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to
extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) ->
B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that
f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- =
0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty
apply to all exclusive B-meson branching fractions measured at the Y(4S)
resonance.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
First Observation of the Decays and B^{0}\to D^{*-}p\bar{n}$
We report the first observation of exclusive decays of the type B to D^* N
anti-N X, where N is a nucleon. Using a sample of 9.7 times 10^{6} B-Bbar pairs
collected with the CLEO detector operating at the Cornell Electron Storage
Ring, we measure the branching fractions B(B^0 \to D^{*-} proton antiproton
\pi^+) = ({6.5}^{+1.3}_{-1.2} +- 1.0) \times 10^{-4} and B(B^0 \to D^{*-}
proton antineutron) = ({14.5}^{+3.4}_{-3.0} +- 2.7) times 10^{-4}. Antineutrons
are identified by their annihilation in the CsI electromagnetic calorimeter.Comment: 9 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Measurements of B --> D_s^{(*)+} D^{*(*)} Branching Fractions
This article describes improved measurements by CLEO of the and branching fractions, and first evidence
for the decay , where
represents the sum of the , , and
L=1 charm meson states. Also reported is the first
measurement of the polarization in the decay . A partial reconstruction technique, employing only the fully
reconstructed and slow pion from the decay, enhances sensitivity. The observed branching fractions are
, , and , where the first error is statistical,
the second systematic, and the third is due to the uncertainty in the branching fraction. The measured longitudinal
polarization, , is consistent with
the factorization prediction of 54%.Comment: 26 pages (LaTeX), 15 figures. To be submitted to PR
Study of the Decays B0 --> D(*)+D(*)-
The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7
million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine
Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4
and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the
first angular analysis of the B0 --> D*+D*- decay and determine that the
CP-even fraction of the final state is greater than 0.11 at 90% CL. Future
measurements of the time dependence of these decays may be useful for the
investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.
A Search for
We report results of a search for in a sample of 9.7 million
charged meson decays. The search uses both and
decay modes of the , and demands exclusive reconstruction of the
companion decay to suppress background. We set an upper limit on the
branching fraction at 90%
confidence level. With slight modification to the analysis we also establish
at 90% confidence
level.Comment: 10 ages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Measurement of the Masses and Widths of the Sigma_c^++ and Sigma_c^0 Charmed Baryons
Using data recorded by the CLEO II and CLEO II.V detector configurations at
CESR, we report new measurements of the masses of the Sigma_c^{++} and
Sigma_c^0 charmed baryons, and the first measurements of their intrinsic
widths. We find M(Sigma_c^{++}) - M(Lambda_c^+) = 167.4 +- 0.1 +- 0.2 MeV,
Gamma(Sigma_c^{++}) = 2.3 +- 0.2 +- 0.3 MeV, and M(Sigma_c^0) - M(Lambda_c^+) =
167.2 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^0) = 2.5 +- 0.2 +- 0.3 MeV, where the
uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid
Communications. Reference [13] correcte
Precise Measurement of B^{0}\to \bar{B^{0} Mixing Parameters at the S)$
We describe a measurement of B^0-B^0bar mixing parameters exploiting a method
of partial reconstruction of the decay chains B0 -> D^{*-}\pi^+ and B0 ->
D^{*-}\rho^+. Using 9.6 x 10^6 BBbar pairs collected at the Cornell Electron
Storage Ring, we find \chi_d = 0.198 +- 0.013 +- 0.014, |y_d|<0.41 at 95%
confidence level, and |Re(\epsilon_B)|<0.034 at 95% confidence level.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Evidence for the Decay
We present a search for the ``wrong-sign'' decay D0 -> K+ pi- pi+ pi- using 9
fb-1 of e+e- collisions on and just below the Upsilon(4S) resonance. This decay
can occur either through a doubly Cabibbo-suppressed process or through mixing
to a D0bar followed by a Cabibbo-favored process. Our result for the
time-integrated wrong-sign rate relative to the decay D0 -> K- pi+ pi- pi+ is
(0.0041 +0.0012-0.0011(stat.) +-0.0004(syst.))x(1.07 +-0.10)(phase space),
which has a statistical significance of 3.9 standard deviations.Comment: 9 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Measurement of B(/\c->pKpi)
The /\c->pKpi yield has been measured in a sample of two-jet continuum events
containing a both an anticharm tag (Dbar) as well as an antiproton (e+e- ->
Dbar pbar X), with the antiproton in the hemisphere opposite the Dbar. Under
the hypothesis that such selection criteria tag e+e- -> Dbar pbar (/\c) X
events, the /\c->pkpi branching fraction can be determined by measuring the
pkpi yield in the same hemisphere as the antiprotons in our Dbar pbar X sample.
Combining our results from three independent types of anticharm tags, we obtain
B(/\c->pKpi)=(5.0+/-0.5+/-1.2)
Hadronic Mass Moments in Inclusive Semileptonic B Meson Decays
We have measured the first and second moments of the hadronic mass-squared
distribution in B -> X_c l nu, for P(lepton) > 1.5 GeV/c. We find <M_X^2 -
M_D[Bar]^2> = 0.251 +- 0.066 GeV^2, )^2 > = 0.576 +- 0.170
GeV^4, where M_D[Bar] is the spin-averaged D meson mass.
From that first moment and the first moment of the photon energy spectrum in
b -> s gamma, we find the HQET parameter lambda_1 (MS[Bar], to order 1/M^3 and
beta_0 alpha_s^2) to be -0.24 +- 0.11 GeV^2. Using these first moments and the
B semileptonic width, and assuming parton-hadron duality, we obtain |V_cb| =
0.0404 +- 0.0013.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
- …