60 research outputs found
First shark from the late Devonian (Frasnian) gogo formation, Western Australia sheds new light on the development of tessellated calcified cartilage
Background: Living gnathostomes (jawed vertebrates) comprise two divisions, Chondrichthyes (cartilaginous fishes, including euchondrichthyans with prismatic calcified cartilage, and extinct stem chondrichthyans) and Osteichthyes (bony fishes including tetrapods). Most of the early chondrichthyan (‘shark’) record is based upon isolated teeth, spines, and scales, with the oldest articulated sharks that exhibit major diagnostic characters of the group—prismatic calcified cartilage and pelvic claspers in males—being from the latest Devonian, c. 360 Mya. This paucity of information about early chondrichthyan anatomy is mainly due to their lack of endoskeletal bone and consequent low preservation potential. Methodology/Principal Findings: Here we present new data from the first well-preserved chondrichthyan fossil from the early Late Devonian (ca. 380–384 Mya) Gogo Formation Lägerstatte of Western Australia. The specimen is the first Devonian shark body fossil to be acid-prepared, revealing the endoskeletal elements as three-dimensional undistorted units: Meckel’s cartilages, nasal, ceratohyal, basibranchial and possible epibranchial cartilages, plus left and right scapulocoracoids, as well as teeth and scales. This unique specimen is assigned to Gogoselachus lynnbeazleyae n. gen. n. sp.Conclusions/Significance: The Meckel’s cartilages show a jaw articulation surface dominated by an expansive cotylus, and a small mandibular knob, an unusual condition for chondrichthyans. The scapulocoracoid of the new specimen shows evidence of two pectoral fin basal articulation facets, differing from the standard condition for early gnathostomes which have either one or three articulations. The tooth structure is intermediate between the ‘primitive’ ctenacanthiform and symmoriiform condition, and more derived forms with a euselachian-type base. Of special interest is the highly distinctive type of calcified cartilage forming the endoskeleton, comprising multiple layers of nonprismatic subpolygonal tesserae separated by a cellular matrix, interpreted as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans
The braincase and jaws of a Devonian 'acanthodian' and modern gnathostome origins.
Modern gnathostomes (jawed vertebrates) emerged in the early Palaeozoic era, but this event remains unclear owing to a scant early fossil record. The exclusively Palaeozoic acanthodians are possibly the earliest gnathostome group and exhibit a mosaic of shark- and bony fish-like characters that has long given them prominence in discussions of early gnathostome evolution. Their relationships with modern gnathostomes have remained mysterious, partly because their un-mineralized endoskeletons rarely fossilized. Here I present the first-known braincase of an Early Devonian (approximately 418-412 Myr bp) acanthodian, Ptomacanthus anglicus, and re-evaluate the interrelationships of basal gnathostomes. Acanthodian braincases have previously been represented by a single genus, Acanthodes, which occurs more than 100 million years later in the fossil record. The braincase of Ptomacanthus differs radically from the osteichthyan-like braincase of Acanthodes in exhibiting several plesiomorphic features shared with placoderms and some early chondrichthyans. Most striking is its extremely short sphenoid region and its jaw suspension, which displays features intermediate between some Palaeozoic chondrichthyans and osteichthyans. Phylogenetic analysis resolves Ptomacanthus as either the most basal chondrichthyan or as the sister group of all living gnathostomes. These new data alter earlier conceptions of basal gnathostome phylogeny and thus help to provide a more detailed picture of the acquisition of early gnathostome characters
Getting to the Root of Fine Motor Skill Performance in Dentistry: Brain Activity During Dental Tasks in a Virtual Reality Haptic Simulation.
BACKGROUND: There is little evidence considering the relationship between movement-specific reinvestment (a dimension of personality which refers to the propensity for individuals to consciously monitor and control their movements) and working memory during motor skill performance. Functional near-infrared spectroscopy (fNIRS) measuring oxyhemoglobin demands in the frontal cortex during performance of virtual reality (VR) psychomotor tasks can be used to examine this research gap. OBJECTIVE: The aim of this study was to determine the potential relationship between the propensity to reinvest and blood flow to the dorsolateral prefrontal cortices of the brain. A secondary aim was to determine the propensity to reinvest and performance during 2 dental tasks carried out using haptic VR simulators. METHODS: We used fNIRS to assess oxygen demands in 24 undergraduate dental students during 2 dental tasks (clinical, nonclinical) on a VR haptic simulator. We used the Movement-Specific Reinvestment Scale questionnaire to assess the students' propensity to reinvest. RESULTS: Students with a high propensity for movement-specific reinvestment displayed significantly greater oxyhemoglobin demands in an area associated with working memory during the nonclinical task (Spearman correlation, rs=.49, P=.03). CONCLUSIONS: This small-scale study suggests that neurophysiological differences are evident between high and low reinvesters during a dental VR task in terms of oxyhemoglobin demands in an area associated with working memory
The Molecular Epidemiology and Evolution of Murray Valley Encephalitis Virus: Recent Emergence of Distinct Sub-lineages of the Dominant Genotype 1
© 2015 Williams et al. Background: Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV) in Australia has renewed concerns regarding its potential to spread and cause disease. Methodology/Principal Findings: To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM) and Envelope (Env) genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951–2011). Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B). Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G) was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994. Conclusions/Significance: The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus
Early Gnathostome Phylogeny Revisited: Multiple Method Consensus
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.A series of recent studies recovered consistent phylogenetic scenarios of jawed vertebrates, such as the paraphyly of placoderms with respect to crown gnathostomes, and antiarchs as the sister group of all other jawed vertebrates. However, some of the hylogenetic relationships within the group have remained controversial, such as the positions of Entelognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic hypothesis, which shows that some of these phylogenetic conflicts were sourced from a few inadvertent miscodings. The interrelationships of early gnathostomes are addressed based on a combined new dataset with 103 taxa and 335 characters, which is the most comprehensive morphological dataset constructed to date. This dataset is investigated in a phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maximum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different methods. Our findings consistently corroborate the paraphyly of placoderms, all `acanthodians' as a paraphyletic stem group of chondrichthyans, Entelognathus as a stem gnathostome, and the Guiyu-lineage as stem sarcopterygians. The incongruence using different methods is less significant than the consensus, and mainly relates to the positions of the placoderm Wuttagoonaspis, the stem chondrichthyan Ramirosuarezia, and the stem osteichthyan LophosteusÐthe taxa that are either poorly known or highly specialized in character complement. Given that the different performances of each phylogenetic approach, our study provides an empirical case that the multiple phylogenetic analyses of
morphological data are mutually complementary rather than redundant
Groundnut
Groundnut, a crop rich in nutrients, originated in South America and
spread to the rest of the world. Cultivated groundnut contains a fraction of
the genetic diversity present in their closely related wild relatives, which is
not more than 13 %, due to domestication bottleneck. Closely related ones
are placed in section Arachis , which have not been extensively utilized
until now due to ploidy differences between the cultivated and wild relatives.
In order to overcome Arachis species utilization bottleneck, a large
number of tetraploid synthetics were developed at the Legume Cell
Biology Unit of Grain Legumes Program, ICRISAT, India. Evaluation of
synthetics for some of the constraints showed that these were good sources
of multiple disease and pest resistances. Some of the synthetics were utilized
by developing ABQTL mapping populations, which were screened
for some biotic and abiotic constraints. Phenotyping experiments showed
ABQTL progeny lines with traits of interest necessary for the improvement
of groundnut
An evaluation of the infection control potential of a UV clinical podiatry unit
Background: Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne
contamination may be particularly important in podiatry due to the generation of particulates during treatment.
Consequently, technologies that prevent contamination in podiatry settings may have a useful role. The aims of this
investigation were twofold, firstly to determine the ability of a UV cabinet to protect instruments from airborne
contamination and secondly to determine its ability to remove microbes from contaminated surfaces and
instruments.
Method: A UV instrument cabinet was installed in a University podiatry suite. Impact samplers and standard
microbiological techniques were used to determine the nature and extent of microbial airborne contamination.
Sterile filters were used to determine the ability of the UV cabinet to protect exposed surfaces. Artificially
contaminated instruments were used to determine the ability of the cabinet to remove microbial contamination.
Results: Airborne bacterial contamination was dominated by Gram positive cocci including Staphylococcus aureus.
Airborne fungal levels were much lower than those observed for bacteria. The UV cabinet significantly reduced
(p < 0.05) the observed levels of airborne contamination. When challenged with contaminated instruments the
cabinet was able to reduce microbial levels by between 60% to 100% with more complex instruments e.g. clippers,
remaining contaminated.
Conclusions: Bacterial airborne contamination is a potential infection risk in podiatry settings due to the presence
of S. aureus. The use of a UV instrument cabinet can reduce the risk of contamination by airborne microbes. The UV
cabinet tested was unable to decontaminate instruments and as such could pose an infection risk if misused.
Keywords: Infection control, UV, Bacteria, Fungi, Dermatophytes, Contaminatio
Forensic Gait Analysis and Recognition:Standards of Evidence Admissibility
Gait is one biological characteristic which has attracted strong research interest due to its potential use in human identification. Although almost two decades have passed since a forensic gait expert has testified to the identity of a perpetrator in court, the methods remain insufficiently robust, considering the recent paradigm shift witnessed in the forensic science community regarding quality of evidence. In contrast, technological advancements have taken the lead, and research into automated gait recognition has greatly surpassed forensic gait analysis in terms of the size of acquired datasets and demographic variability of participants, tested variables, and statistical evaluation of results. Despite these advantages, gait recognition presents with different problems which are yet to be resolved. Therefore, courts should treat gait evidence with caution, as they should any other form of evidence originating from disciplines without fully established codes of practice, error rates, and demonstrable applications in forensic scenarios
- …