15 research outputs found

    Geochemical and Faunal Characterization in the Sediments off the Cuban North and Northwest Coast

    No full text
    This chapter provides a summary of the scientific knowledge about sediments and fauna in the margin of northwest Cuban shelf. Little scientific information is publicly available, and so much of what is discussed here is the result of the scientific expedition to the region in May 2017 on board the R/V Weatherbird II as part of the GoMRI consortium, C-IMAGE (see Foreword, this book). The goal was to set broad environmental baselines against which to evaluate the impacts of any potential future oil spill or other disturbance in the Gulf of Mexico (GoM). The chapter is organized in three parts: (1) overview of the geographical setting of Cuban margin of GoM; (2) sediment characterization including texture, composition, and geochronology of sediment cores; and (3) characterization of key bioindicators of oil impact: mollusks, meiofauna, and foraminifera

    ESCRT-III controls nuclear envelope reformation

    Get PDF
    During telophase, the nuclear envelope (NE) reforms around daughter nuclei to ensure proper segregation of nuclear and cytoplasmic contents(1-4). NE reformation requires the coating of chromatin by membrane derived from the Endoplasmic Reticulum and a subsequent annular fusion step to ensure the formed envelope is sealed(1,2,4,5). How annular fusion is accomplished is unknown, but it is thought to involve the p97 AAA-ATPase complex and bears a topological equivalence to the membrane fusion event that occurs during the abscission phase of cytokinesis(1,6). We find here that the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery localises to sites of annular fusion in the forming NE and is necessary for proper post-mitotic nucleo-cytoplasmic compartmentalisation. The ESCRT-III component Charged Multivesicular Body Protein (CHMP) 2A is directed to the forming NE through binding to CHMP4B and provides an activity essential for NE reformation. Localisation also requires the p97 complex member Ubiquitin Fusion and Degradation 1 (UFD1). Our results describe a novel role for the ESCRT-machinery in cell division and demonstrate a conservation of the machineries involved in topologically equivalent mitotic membrane remodeling events
    corecore