12 research outputs found

    Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    Get PDF
    Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic

    Electrochemical half-reaction-assisted sub-bandgap photon sensing in a graphene hybrid phsotodetector

    Get PDF
    The photogating effect has been previously utilized to realize ultra-high photoresponsivity in a semiconductor-graphene hybrid photodetector. However, the spectral response of the graphene hybrid photodetector was limited by the bandgap of the incorporated semiconductor, which partially compromised the broadband absorption of graphene. Here, we show that this limitation can be overcome in principle by harnessing the electron-accepting ability of the electrochemical half-reaction. In our new graphene phototransistor, the electrochemical half-reaction serves as an effective reversible electron reservoir to accept the photoexcited hot electron from graphene, which promotes the sub-bandgap photosensitivity in a silver chloride (AgCl)-graphene photodetector. The photoconductive gain of ~ 3 × 109 electrons per photon in the AgCl-graphene hybrid is favored by the long lifetime of photoexcited carriers in the chemically reversible redox couple of AgCl/Ag0, enabling a significant visible light (400–600 nm) responsivity that is far beyond the band-edge absorption of AgCl. This work not only presents a new strategy to achieve an electrically tunable sub-bandgap photoresponse in semiconductor-graphene heterostructures but also provides opportunities for utilizing the electrochemical half reaction in other two-dimensional systems and optoelectronic devices.published_or_final_versio
    corecore