273 research outputs found

    Food properties that influence neuromuscular activity during human mastication

    Get PDF
    published_or_final_versio

    Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.

    Get PDF
    Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics

    Videofluorographic Evaluation of Mastication and Swallowing of Japanese Udon Noodles and White Rice

    Get PDF
    A videofluorographic (VF) swallowing study was performed on 22 healthy volunteers to observe the complete mastication and swallowing phases for Japanese udon noodles and white rice. The hardness, stickiness, and cohesiveness of food samples were measured using a food texture analyzing system. VF images were acquired using a versatile fluoroscopic unit and barium sulfate was used as a contrast medium. Udon noodles had a harder and smoother food texture than white rice. Fewer chewing movements and more stage 2 transport were seen during the consumption of udon noodles than for white rice

    Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as <it>E. coli </it>due to the presence of multiple pathways for their reduction.</p> <p>Results</p> <p>Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of <it>E. coli </it>even without the disruption of genes involved in disulfide bond reduction, for example <it>trxB </it>and/or <it>gor</it>. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an <it>E. coli </it>strain with the reducing pathways intact, than in the commercial Δ<it>gor </it>Δ<it>trxB </it>strain rosetta-gami upon co-expression of Erv1p.</p> <p>Conclusions</p> <p>Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of <it>E. coli </it>and open up new possibilities for the use of <it>E. coli </it>as a microbial cell factory.</p

    An Ultra-High Discrimination Y Chromosome Short Tandem Repeat Multiplex DNA Typing System

    Get PDF
    In forensic casework, Y chromosome short tandem repeat markers (Y-STRs) are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12–17 loci are currently used in forensic casework (Promega's PowerPlex® Y and Applied Biosystems' AmpFlSTR® Yfiler®). Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used ‘core’ Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD) multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572) indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR® Yfiler® kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary genetics and genetic genealogy

    Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in αβ and γδ T Cells

    Get PDF
    Differentiation of T helper 17 cells (Th17) is a multistep process that involves the cytokines IL-6, TGF-β, and IL-23 as well as IL-1β, IL-21, and TNF-α. Thereby, robust induction of the capacity to produce IL-17 involves epigenetic modifications of the syntenic Il17a/f locus. Using inbred mouse strains, we identified co-regulation of gene transcription at the Il17a/f locus with the nearby microRNAs miR-133b and miR-206 that are clustered approximately 45 kb upstream of Il17a/f. Expression of these microRNAs was specific for Th17 as compared to other CD4+ T cell subsets and this was equally valid for in vitro polarized and ex vivo derived cells. From all factors analyzed, IL-23 was the most important cytokine for the in vitro induction of miR-133b and miR-206 in naive CD4+ T cells of wild type mice. However, analysis of IL-23R deficient mice revealed that IL-23R signaling was not essential for the induction of miR-133b and miR-206. Importantly, we found a similar co-regulation in CCR6+ and other γδ T cell subsets that are predisposed to production of IL-17. Taken together, we discovered a novel feature of T cell differentiation towards an IL-17-producing phenotype that is shared between αβ and γδ T cells. Notably, the specific co-regulation of miR-133b and miR-206 with the Il17a/f locus also extended to human Th17 cells. This qualifies expression of miR-133b and miR-206 in T cells as novel biomarkers for Th17-type immune reactions
    corecore