24 research outputs found

    Comparison of two high-throughput semiconductor chip sequencing platforms in noninvasive prenatal testing for Down syndrome in early pregnancy

    Get PDF
    Background: Noninvasive prenatal testing (NIPT) to detect fetal aneuploidy using next-generation sequencing on ion semiconductor platforms has become common. There are several sequencers that can generate sufficient DNA reads for NIPT. However, the approval criteria vary among platforms and countries. This can delay the introduction of such devices and systems to clinics. A comparison of the sensitivity and specificity of two different platforms using the same sequencing chemistry could be useful in NIPT for fetal chromosomal aneuploidies. This would improve healthcare authorities' confidence in decision-making on sequencing-based tests. Methods: One hundred and one pregnant women who were predicted at high risk of fetal defects using conventional prenatal screening tests, and who underwent definitive diagnosis by full karyotyping, were enrolled from three hospitals in Korea. Most of the pregnant women (69.79 %) received NIPT during weeks 11-13 of gestation and 30.21 % during weeks 14-18. We used Ion Torrent PGM and Proton semi-conductor-based sequencers with 0.3x sequencing coverage depth. The average total reads of 101 samples were approximately 4.5 and 7.6 M for PGM and Proton, respectively. A Burrows-Wheeler Aligner (BWA) algorithm was used for the alignment, and a z-score was used to decide fetal trisomy 21. Interactive dot diagrams from the sequencing data showed minimal z-score values of 2.07 and 2.10 to discriminate negative versus positive cases of fetal trisomy 21 for the two different sequencing systems. Results: Our z-score-based discrimination method resulted in 100 % positive and negative prediction values for both ion semiconductor PGM and Proton sequencers, regardless of their sequencing chip and chemistry differences. Both platforms performed well at an early stage (11-13 weeks of gestation) compared with previous studies. Conclusions: These results suggested that, using two different sequencers, NIPT to detect fetal trisomy 21 in early pregnancy is accurate and platform-independent. The data suggested that the amount of sequencing and the application of common, simple, and robust statistical analyses are more important than sequencing chemistry and platform types. This result has practical implications in countries where PGM is approved for NIPT but the Proton system is not.ope

    The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform

    Get PDF
    Objective: Recent non-invasive prenatal testing (NIPT) technologies are based on next-generation sequencing (NGS). NGS allows rapid and effective clinical diagnoses to be determined with two common sequencing systems: Illumina and Ion Torrent platforms. The majority of NIPT technology is associated with Illumina platform. We investigated whether fetal trisomy 18 and 21 were sensitively and specifically detectable by semiconductor sequencer: Ion Proton. Methods: From March 2012 to October 2013, we enrolled 155 pregnant women with fetuses who were diagnosed as high risk of fetal defects at Xiamen Maternal & Child Health Care Hospital (Xiamen, Fujian, China). Adapter-ligated DNA libraries were analyzed by the Ion Proton??? System (Life Technologies, Grand Island, NY, USA) with an average 0.3 ?? sequencing coverage per nucleotide. Average total raw reads per sample was 6.5 million and mean rate of uniquely mapped reads was 59.0%. The results of this study were derived from BWA mapping. Z-score was used for fetal trisomy 18 and 21 detection. Results: Interactive dot diagrams showed the minimal z-score values to discriminate negative versus positive cases of fetal trisomy 18 and 21. For fetal trisomy 18, the minimal z-score value of 2.459 showed 100% positive predictive and negative predictive values. The minimal z-score of 2.566 was used to classify negative versus positive cases of fetal trisomy 21. Conclusion: These results provide the evidence that fetal trisomy 18 and 21 detection can be performed with semiconductor sequencer. Our data also suggest that a prospective study should be performed with a larger cohort of clinically diverse obstetrics patients.open2
    corecore