7 research outputs found

    P2 receptors in macrophage fusion and osteoclast formation

    Get PDF
    Cells of the mononuclear phagocyte lineage fuse to form multinucleated giant cells and osteoclasts. Several lines of evidence suggest that P2 receptors, in particular P2X7, are involved in this process, although P2X7 is not absolutely required for fusion because P2X7-null mice form multinucleated osteoclasts. Extracellular ATP may be an important regulator of macrophage fusion

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    Expression, signaling, and function of P2X7 receptors in bone

    No full text
    Nucleotides released from cells in response to mechanical stimulation or injury may serve as paracrine regulators of bone cell function. Extracellular nucleotides bind to multiple subtypes of P2 receptors on osteoblasts (the cells responsible for bone formation) and osteoclasts (cells with the unique ability to resorb mineralized tissues). Both cell lineages express the P2X7 receptor subtype. The skeletal phenotype of mice with targeted disruption of P2rx7 points to interesting roles for this receptor in the regulation of bone formation and resorption, as well as the response of the skeleton to mechanical stimulation. This paper reviews recent work on the expression of P2X7 receptors in bone, their associated signal transduction mechanisms and roles in regulating bone formation and resorption. Areas for future research in this field are also discussed

    Purinergic signalling in the musculoskeletal system

    No full text
    corecore