14 research outputs found

    Percutaneous cement augmentation for the treatment of depression fractures of the tibial plateau

    Get PDF
    The management of insufficiency fractures of the tibial plateau in osteoporotic patients can be very challenging, since it is difficult to achieve a stable fixation, an essential condition for the patients' early mobilization. We present a minimally invasive technique for the treatment of proximal tibial plateau fractures, "tibiaplasty", using percutaneous polymethylmethacrylate augmentation. Five osteoporotic patients (7 fractures) with a non-traumatic insufficiency tibial plateau fracture were treated with this technique at the authors' institution from 2006 to 2008. The patients' median age was 79 (range 62-88) years. The intervention was performed percutaneously under general or spinal anesthesia; after the intervention, immediate full weight bearing was allowed. The technique was feasible in all patients and no complications related to the intervention were observed. All patients reported a relevant reduction in pain, were able to mobilize with full weight bearing and would undergo the operation again. No secondary loss of reduction or progression of arthrosis was observed in radiological controls; no revision surgery was required. Our initial results indicate that tibiaplasty is a good treatment option for the management of insufficiency in tibial plateau fractures in osteoporotic patients. The technique is minimally invasive, safe and allows immediate mobilization without restrictions. In our group of patients, we found excellent early to mid-term results

    Superior odontoid migration in the Klippel–Feil patient

    No full text
    Klippel–Feil syndrome (KFS) is an uncommon condition noted primarily as congenital fusion of two or more cervical vertebrae. Superior odontoid migration (SOM) has been noted in various skeletal deformities and entails an upward/vertical migration of the odontoid process into the foramen magnum with depression of the cranium. Excessive SOM could potentially threaten neurologic integrity. Risk factors associated with the amount of SOM in the KFS patient are based on conjecture and have not been addressed in the literature. Therefore, this study evaluated the presence and extent of SOM and the various risk factors and clinical manifestations associated therein in patients with KFS. Twenty-seven KFS patients with no prior history of surgical intervention of the cervical spine were included for a prospective radiographic and retrospective clinical review. Radiographically, McGregor’s line was utilized to evaluate the degree of SOM. Anterior and posterior atlantodens intervals (AADI/PADI), number of fused segments (C1–T1), presence of occipitalization, classification-type, and lateral and coronal cervical alignments were also evaluated. Clinically, patient demographics and presence of cervical symptoms were assessed. Radiographic and clinical evaluations were conducted by two independent blinded observers. There were 8 males and 19 females with a mean age of 13.5 years at the time of radiographic and clinical assessment. An overall mean SOM of 5.0 mm (range = −1.0 to 19.0 mm) was noted. C2–C3 (74.1%) was the most commonly fused segment. A statistically significant difference was not found between the amount of SOM to age, sex-type, classification-type, AADI, PADI, and lateral cervical alignment (P > 0.05). A statistically significant greater amount of SOM was found as the number of fused segments increased (r = 0.589; P = 0.001) and if such levels included occipitalization (r = 0.616; P = 0.001). A statistically significant greater amount of SOM was also found with an increase in coronal cervical alignment (r = 0.413; P = 0.036). Linear regression modeling further supported these findings as the strongest predictive variables contributing to an increase in SOM. A 7.20 crude relative risk (RR) ratio [95% confidence interval (CI) = 1.05–49.18; risk differences (RD) = 0.52] was noted in contributing to a SOM greater than 4.5 mm if four or more segments were fused. Adjusting for coronal cervical alignment greater than 10°, five or more fused segments were found to significantly increase the RR of a SOM greater than 4.5 mm (RR = 4.54; 95% CI = 1.07–19.50; RD = 0.48). The RR of a SOM greater than 4.5 mm was more pronounced in females (RR = 1.68; 95% CI = 0.45–6.25; RD = 0.17) than in males. Eight patients (29.6%) were symptomatic, of which symptoms in two of these patients stemmed from a traumatic event. However, a statistically significant difference was not found between the presence of symptoms to the amount of SOM and other exploratory variables (P > 0.05). A mean SOM of 5.0 mm was found in our series of KFS patients. In such patients, increases in the number of congenitally fused segments and in the degree of coronal cervical alignment were strongly associated risk factors contributing to an increase in SOM. Patients with four or greater congenitally fused segments had an approximately sevenfold increase in the RR in developing SOM greater than 4.5 mm. A higher RR of SOM more than 4.5 mm may be associated with sex-type. However, 4.5 mm or greater SOM is not synonymous with symptoms in this series. Furthermore, the presence of symptoms was not statistically correlated with the amount of SOM. The treating physician should be cognizant of such potential risk factors, which could also help to indicate the need for further advanced imaging studies in such patients. This study suggests that as motion segments diminish and coronal cervical alignment is altered, the odontoid orientation is located more superiorly, which may increase the risk of neurologic sequelae

    Disc replacement using Pro-Disc C versus fusion: a prospective randomised and controlled radiographic and clinical study

    No full text
    Anterior cervical discectomy and fusion (ACDF) may be considered to be the gold standard for treatment of symptomatic degenerative disc disease within the cervical spine. However, fusion of the segment may result in progressive degeneration of the adjacent segments. Therefore, dynamic stabilization procedures have been introduced. Among these, artificial disc replacement by disc prosthesis seems to be promising. However, to be so, segmental motion must be preserved. This, again, is very difficult to judge and has not yet been proven. The aim of the current study was to first analyse the segmental motion following artificial disc replacement using a disc prosthesis. A second aim was to compare both segmental motion as well as clinical result to the current gold standard (ACDF). This is a prospective controlled study. Twenty-five patients with cervical disc herniation were enrolled and assigned to either study group (receiving a disc prosthesis) or control group (receiving ACDF, using a cage with bone graft and an anterior plate.) Radiostereometric analysis was used to quantify intervertebral motion immediately as well as 3, 6, 12 and 24 weeks postoperatively. Further, clinical results were judged using visual analogue scale and neuro-examination. Cervical spine segmental motion decreased over time in the presence of disc prosthesis or ACDF. However, the loss of segmental motion is significantly higher in the ACDF group, when looked at 3, 6, 12 and 24 weeks after surgery. We observed significant pain reduction in neck and arm postoperatively, without significant difference between both groups (P > 0.05). Cervical spine disc prosthesis preserves cervical spine segmental motion within the first 6 months after surgery. The clinical results are the same when compared to the early results following ACDF
    corecore