83 research outputs found
Dopamine Beta Hydroxylase Genotype Identifies Individuals Less Susceptible to Bias in Computer-Assisted Decision Making
Computerized aiding systems can assist human decision makers in complex tasks but can impair performance when they provide incorrect advice that humans erroneously follow, a phenomenon known as “automation bias.” The extent to which people exhibit automation bias varies significantly and may reflect inter-individual variation in the capacity of working memory and the efficiency of executive function, both of which are highly heritable and under dopaminergic and noradrenergic control in prefrontal cortex. The dopamine beta hydroxylase (DBH) gene is thought to regulate the differential availability of dopamine and norepinephrine in prefrontal cortex. We therefore examined decision-making performance under imperfect computer aiding in 100 participants performing a simulated command and control task. Based on two single nucleotide polymorphism (SNPs) of the DBH gene, −1041 C/T (rs1611115) and 444 G/A (rs1108580), participants were divided into groups of low and high DBH enzyme activity, where low enzyme activity is associated with greater dopamine relative to norepinephrine levels in cortex. Compared to those in the high DBH enzyme activity group, individuals in the low DBH enzyme activity group were more accurate and speedier in their decisions when incorrect advice was given and verified automation recommendations more frequently. These results indicate that a gene that regulates relative prefrontal cortex dopamine availability, DBH, can identify those individuals who are less susceptible to bias in using computerized decision-aiding systems
Methamphetamine Inhibits the Glucose Uptake by Human Neurons and Astrocytes: Stabilization by Acetyl-L-Carnitine
Methamphetamine (METH), an addictive psycho-stimulant drug exerts euphoric effects on users and abusers. It is also known to cause cognitive impairment and neurotoxicity. Here, we hypothesized that METH exposure impairs the glucose uptake and metabolism in human neurons and astrocytes. Deprivation of glucose is expected to cause neurotoxicity and neuronal degeneration due to depletion of energy. We found that METH exposure inhibited the glucose uptake by neurons and astrocytes, in which neurons were more sensitive to METH than astrocytes in primary culture. Adaptability of these cells to fatty acid oxidation as an alternative source of energy during glucose limitation appeared to regulate this differential sensitivity. Decrease in neuronal glucose uptake by METH was associated with reduction of glucose transporter protein-3 (GLUT3). Surprisingly, METH exposure showed biphasic effects on astrocytic glucose uptake, in which 20 µM increased the uptake while 200 µM inhibited glucose uptake. Dual effects of METH on glucose uptake were paralleled to changes in the expression of astrocytic glucose transporter protein-1 (GLUT1). The adaptive nature of astrocyte to mitochondrial β-oxidation of fatty acid appeared to contribute the survival of astrocytes during METH-induced glucose deprivation. This differential adaptive nature of neurons and astrocytes also governed the differential sensitivity to the toxicity of METH in these brain cells. The effect of acetyl-L-carnitine for enhanced production of ATP from fatty oxidation in glucose-free culture condition validated the adaptive nature of neurons and astrocytes. These findings suggest that deprivation of glucose-derived energy may contribute to neurotoxicity of METH abusers
Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways.
Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment
Prioritization and Evaluation of Depression Candidate Genes by Combining Multidimensional Data Resources
Large scale and individual genetic studies have suggested numerous susceptible genes for depression in the past decade without conclusive results. There is a strong need to review and integrate multi-dimensional data for follow up validation. The present study aimed to apply prioritization procedures to build-up an evidence-based candidate genes dataset for depression.Depression candidate genes were collected in human and animal studies across various data resources. Each gene was scored according to its magnitude of evidence related to depression and was multiplied by a source-specific weight to form a combined score measure. All genes were evaluated through a prioritization system to obtain an optimal weight matrix to rank their relative importance with depression using the combined scores. The resulting candidate gene list for depression (DEPgenes) was further evaluated by a genome-wide association (GWA) dataset and microarray gene expression in human tissues.A total of 5,055 candidate genes (4,850 genes from human and 387 genes from animal studies with 182 being overlapped) were included from seven data sources. Through the prioritization procedures, we identified 169 DEPgenes, which exhibited high chance to be associated with depression in GWA dataset (Wilcoxon rank-sum test, p = 0.00005). Additionally, the DEPgenes had a higher percentage to express in human brain or nerve related tissues than non-DEPgenes, supporting the neurotransmitter and neuroplasticity theories in depression.With comprehensive data collection and curation and an application of integrative approach, we successfully generated DEPgenes through an effective gene prioritization system. The prioritized DEPgenes are promising for future biological experiments or replication efforts to discover the underlying molecular mechanisms for depression
Exogenous Visual Orienting Is Associated with Specific Neurotransmitter Genetic Markers: A Population-Based Genetic Association Study
Background: Currently, there is a sense that the spatial orienting of attention is related to genotypic variations in cholinergic genes but not to variations in dopaminergic genes. However, reexamination of associations with both cholinergic and dopaminergic genes is warranted because previous studies used endogenous rather than exogenous cues and costs and benefits were not analyzed separately. Examining costs (increases in response time following an invalid precue) and benefits (decreases in response time following a valid pre-cue) separately could be important if dopaminergic genes (implicated in disorders such as attention deficit disorder) independently influence the different processes of orienting (e.g., disengage, move, engage). Methodology/Principal Findings: We tested normal subjects (N = 161) between 18 and 61 years. Participants completed a computer task in which pre-cues preceded the presence of a target. Subjects responded (with a key press) to the location of the target (right versus left of fixation). The cues could be valid (i.e., appear where the target would appear) or invalid (appear contralateral to where the target would appear). DNA sequencing assays were performed on buccal cells to genotype known genetic markers and these were examined for association with task scores. Here we show significant associations between visual orienting and genetic markers (on COMT, DAT1, and APOE; R 2 s from 4 % to 9%). Conclusions/Significance: One measure in particular – the response time cost of a single dim, invalid cue – was associate
High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy
<p>Abstract</p> <p>Background</p> <p>Many copy number variants (CNVs) are documented to be associated with neuropsychiatric disorders, including intellectual disability, autism, epilepsy, schizophrenia, and bipolar disorder. Chromosomal deletions of 1q21.1, 3q29, 15q13.3, 22q11.2, and <it>NRXN1 </it>and duplications of 15q11-q13 (maternal), 16p11, and 16p13.3 have the strongest association with schizophrenia. We hypothesized that cases with both schizophrenia and epilepsy would have a higher frequency of disease-associated CNVs and would represent an enriched sample for detection of other mutations associated with schizophrenia.</p> <p>Methods</p> <p>We used array comparative genomic hybridization (CGH) to analyze 235 individuals with both schizophrenia and epilepsy, 80 with bipolar disorder and epilepsy, and 191 controls.</p> <p>Results</p> <p>We detected 10 schizophrenia plus epilepsy cases in 235 (4.3%) with the above mentioned CNVs compared to 0 in 191 controls (p = 0.003). Other likely pathological findings in schizophrenia plus epilepsy cases included 1 deletion 16p13 and 1 duplication 7q11.23 for a total of 12/235 (5.1%) while a possibly pathogenic duplication of 22q11.2 was found in one control for a total of 1 in 191 (0.5%) controls (p = 0.008). The rate of abnormality in the schizophrenia plus epilepsy of 10/235 for the more definite CNVs compares to a rate of 75/7336 for these same CNVs in a series of unselected schizophrenia cases (p = 0.0004).</p> <p>Conclusion</p> <p>We found a statistically significant increase in the frequency of CNVs known or likely to be associated with schizophrenia in individuals with both schizophrenia and epilepsy compared to controls. We found an overall 5.1% detection rate of likely pathological findings which is the highest frequency of such findings in a series of schizophrenia patients to date. This evidence suggests that the frequency of disease-associated CNVs in patients with both schizophrenia and epilepsy is significantly higher than for unselected schizophrenia.</p
†Kenyaichthyidae fam. nov and †Kenyaichthys gen. nov - First Record of a Fossil Aplocheiloid Killifish (Teleostei, Cyprinodontiformes)
The extant Cyprinodontiformes (killifishes) with their two suborders Cyprinodontoidei and Aplocheiloidei represent a diverse and well-studied group of fishes. However, their fossil record is comparatively sparse and has so far yielded members of the Cyprinodontoidei only. Here we report on cyprinodontiform fossils from the upper Miocene Lukeino Formation in the Tugen Hills of the Central Rift Valley of Kenya, which represent the first fossil record of an aplocheiloid killifish. A total of 169 specimens - mostly extraordinarily well preserved and a sample of ten extant cyprinodontiform species were studied on the basis of morphometrics, meristics and osteology. A phylogenetic analysis using PAUP was also conducted for the fossils. Both the osteological data and the phylogenetic analysis provide strong evidence for the assignment of the fossils to the Aplocheiloidei, and justify the definition of the new family dagger Kenyaichthyidae, the new genus dagger Kenyaichthys and the new species dagger K. kipkechi sp. nov. The phylogenetic analysis unexpectedly places dagger Kenyaichthys gen. nov. in a sister relationship to the Rivulidae (a purely Neotropical group),a probable explanation might be lack of available synapomorphies for the Rivulidae, Nothobranchiidae and Aplocheilidae. The specimens of dagger K. kipkechi sp. nov. show several polymorphic characters and large overlap in meristic traits, which justifies their interpretation as a species flock in statu nascendi. Patterns of variation in neural and haemal spine dimensions in the caudal vertebrae of dagger Kenyaichthys gen. nov. and the extant species studied indicate that some previously suggested synapomorphies of the Cyprinodontoidei and Aplocheiloidei need to be revised
The relationship between subtypes of depression and cardiovascular disease: a systematic review of biological models
A compelling association has been observed between cardiovascular disease (CVD) and depression, suggesting individuals with depression to be at significantly higher risk for CVD and CVD-related mortality. Systemic immune activation, hypothalamic–pituitary–adrenal (HPA) axis hyperactivity, arterial stiffness and endothelial dysfunction have been frequently implicated in this relationship. Although a differential epidemiological association between CVD and depression subtypes is evident, it has not been determined if this indicates subtype specific biological mechanisms. A comprehensive systematic literature search was conducted using PubMed and PsycINFO databases yielding 147 articles for this review. A complex pattern of systemic immune activation, endothelial dysfunction and HPA axis hyperactivity is suggestive of the biological relationship between CVD and depression subtypes. The findings of this review suggest that diagnostic subtypes rather than a unifying model of depression should be considered when investigating the bidirectional biological relationship between CVD and depression. The suggested model of a subtype-specific biological relationship between depression and CVDs has implications for future research and possibly for diagnostic and therapeutic processes
- …