6 research outputs found

    Extended depth-of-field microscopy with a micro-mirror array lens system for versatile cellular examination

    No full text
    Extended depth of field microscopy is a method to acquire complete object image in a single view, but they have their respective limitations. We present a versatile EDOF wide-field microscopy that insensitive to calibration and orientation by using a micro-mirror array lens system (MALS), a MEMS-based fast dynamic varifocal lens. The system performance was demonstrated in two imaging cases: imaging of conjunctival surface of live mouse eye and surface cell examination of human tissues.2

    Moxifloxacin-based extended depth-of-field (EDOF) wide-field microscopy with surface tracking for non-invasive examination of conjunctival goblet cells in awake human subjects

    No full text
    Mucin secretive conjunctival goblet cells (CGCs) in the eye play important roles in ocular surface homeostasis by forming the mucous layer of the tear film. CGC information is also an important biomarker for diagnosis because CGC loss or dysfunction is observed in various ocular surface diseases. In this study, we developed moxifloxacin-based extended depth-of-field (EDOF) microscopy with surface tracking for non-invasive CGC imaging in awake human subjects. The system had a DOF of 0.8 mm, a field of view (FOV) of 1.3mm x 1.3mm, and imaging speed of 15 fps. The phase detection method was used for real-time surface tracking. Moxifloxacin ophthalmic solution was topically instilled for CGC labeling. Repeated large area imaging of the same conjunctiva in a human subject was demonstrated. MBFM might have the potential for non-invasive CGC examination in patients.1

    Feasibility of moxifloxacin and proflavine dual fluorescence imaging for detecting gastrointestinal neoplastic lesions: A prospective study

    No full text
    Objectives: High-contrast and high-resolution imaging techniques would enable real-time sensitive detection of the gastrointestinal lesions. This study aimed to investigate the feasibility of novel dual fluorescence imaging using moxifloxacin and proflavine in the detection of neoplastic lesions of the human gastrointestinal tract. Methods: Patients with the colonic and gastric neoplastic lesions were prospectively enrolled. The lesions were biopsied with forceps or endoscopically resected. Dual fluorescence imaging was performed by using custom axially swept wide-field fluorescence microscopy after topical moxifloxacin and proflavine instillation. Imaging results were compared with both confocal imaging with cell labeling and conventional histological examination. Results: Ten colonic samples (one normal mucosa, nine adenomas) from eight patients and six gastric samples (one normal mucosa, five adenomas) from four patients were evaluated. Dual fluorescence imaging visualized detail cellular structures. Regular glandular structures with polarized cell arrangement were observed in normal mucosa. Goblet cells were preserved in normal colonic mucosa. Irregular glandular structures with scanty cytoplasm and dispersed elongated nuclei were observed in adenomas. Goblet cells were scarce or lost in the colonic lesions. Similarity analysis between moxifloxacin and proflavine imaging showed relatively high correlation values in adenoma compared with those in normal mucosa. Dual fluorescence imaging showed good detection accuracies of 82.3% and 86.0% in the colonic and the gastric lesions, respectively. Conclusions: High-contrast and high-resolution dual fluorescence imaging was feasible for obtaining detail histopathological information in the gastrointestinal neoplastic lesions. Further studies are needed to develop dual fluorescence imaging as an in vivo real-time visual diagnostic method.11Nsciescopu
    corecore