2,705 research outputs found
Delta isobar masses, large N_c relations, and the quark model
Motivated by recent remarks on the Delta+ mass and comparisons between the
quark model and relations based on large-N_c with perturbative flavor breaking,
two sets of Delta masses consistent with these constraints are constructed.
These two sets, based either on an experimentally determined mass splitting or
a quark model of isospin symmetry breaking, are shown to be inconsistent. The
model dependence of this inconsistency is examined, and suggestions for
improved experiments are made. An explicit quark model calculation and mass
relations based on the large-N_c limit with perturbative flavor breaking are
compared. The expected level of accuracy of such relations is realized in the
quark model, except for mass relations spanning more than one SU(6)
representation. It is shown that the Delta0 and Delta++ pole masses and Delta0
- Delta+ = (Delta- - Delta++)/3 about 1.5 MeV are more consistent with model
expectations than the analogous Breit-Wigner masses and their splittings.Comment: 10 pages, including 1 eps figure, revte
Chiral Perturbation Theory and the pp -> pp pi0 Reaction Near Threshold
A chiral-perturbative consideration of the near-threshold pp -> pp pi0
reaction indicates that the pion-rescattering term has a substantial energy and
momentum dependence. The existing calculations that incorporate this dependence
give pion rescattering contributions significantly larger than those of the
conventional treatment, and this enhanced rescattering term interferes
destructively with the one-body impulse term, leading to theoretical cross
sections that are much smaller than the observed values. However, since the
existing calculations are based on coordinate-space representation, they
involve a number of simplifying assumptions about the energy-momentum flow in
the rescattering diagram, even though the delicate interplay between the
one-body and two-body terms makes it desirable to avoid these kinematical
assumptions. We carry out here a momentum-space calculation that retains the
energy-momentum dependence of the vertices as predicted by chiral perturbation
theory. Our improved treatment increases the rescattering amplitude by a factor
of 3 over the value obtained in the r-space calculations. The pp -> pp pi0
transition amplitude, which is now dominated by the rescattering term, leads to
the cross section much larger than what was reported in the approximate r-space
calculations. Thus, the extremely small cross sections obtained in the previous
chiral perturbative treatments of this reaction should be considered as an
accidental consequence of the approximations employed rather than a general
feature.Comment: 25 pages,REVTEX, 5 ps figure
In search of phylogenetic congruence between molecular and morphological data in bryozoans with extreme adult skeletal heteromorphy
peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tsab20© Crown Copyright 2015. This document is the author's final accepted/submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it
Revisiting Scalar and Pseudoscalar Couplings with Nucleons
Certain dark matter interactions with nuclei are mediated possibly by a
scalar or pseudoscalar Higgs boson. The estimation of the corresponding cross
sections requires a correct evaluation of the couplings between the scalar or
pseudoscalar Higgs boson and the nucleons. Progress has been made in two
aspects relevant to this study in the past few years. First, recent lattice
calculations show that the strange-quark sigma term and the
strange-quark content in the nucleon are much smaller than what are expected
previously. Second, lattice and model analyses imply sizable SU(3) breaking
effects in the determination on the axial-vector coupling constant that
in turn affect the extraction of the isosinglet coupling and the
strange quark spin component from polarized deep inelastic
scattering experiments. Based on these new developments, we re-evaluate the
relevant nucleon matrix elements and compute the scalar and pseudoscalar
couplings of the proton and neutron. We also find that the strange quark
contribution in both types of couplings is smaller than previously thought.Comment: 17 pages, Sec. II is revised and the pion-nucleon sigma term
extracted from the scattering data is discussed. Version to appear in JHE
The Interstellar Environment of our Galaxy
We review the current knowledge and understanding of the interstellar medium
of our galaxy. We first present each of the three basic constituents - ordinary
matter, cosmic rays, and magnetic fields - of the interstellar medium, laying
emphasis on their physical and chemical properties inferred from a broad range
of observations. We then position the different interstellar constituents, both
with respect to each other and with respect to stars, within the general
galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts
Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys
Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and
Applications" to be published in the series Springer Lecture Notes on Physics,
P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical
work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals
and Applications" to be published in the series Springer Lecture Notes on
Physics, P. H. Dederichs and I. Galanakis (eds
Control of star formation by supersonic turbulence
Understanding the formation of stars in galaxies is central to much of modern
astrophysics. For several decades it has been thought that stellar birth is
primarily controlled by the interplay between gravity and magnetostatic
support, modulated by ambipolar diffusion. Recently, however, both
observational and numerical work has begun to suggest that support by
supersonic turbulence rather than magnetic fields controls star formation. In
this review we outline a new theory of star formation relying on the control by
turbulence. We demonstrate that although supersonic turbulence can provide
global support, it nevertheless produces density enhancements that allow local
collapse. Inefficient, isolated star formation is a hallmark of turbulent
support, while efficient, clustered star formation occurs in its absence. The
consequences of this theory are then explored for both local star formation and
galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28
figures, in pres
Femtometer Toroidal Structures in Nuclei
The two-nucleon density distributions in states with isospin , spin
=1 and projection =0 and 1 are studied in H, He,
Li and O. The equidensity surfaces for =0 distributions are
found to be toroidal in shape, while those of =1 have dumbbell shapes
at large density. The dumbbell shapes are generated by rotating tori. The
toroidal shapes indicate that the tensor correlations have near maximal
strength at fm in all these nuclei. They provide new insights and simple
explanations of the structure and electromagnetic form factors of the deuteron,
the quasi-deuteron model, and the , and =2 (-wave)
components in He, He and Li. The toroidal distribution has a
maximum-density diameter of 1 fm and a half-maximum density thickness of
0.9 fm. Many realistic models of nuclear forces predict these values,
which are supported by the observed electromagnetic form factors of the
deuteron, and also predicted by classical Skyrme effective Lagrangians, related
to QCD in the limit of infinite colors. Due to the rather small size of this
structure, it could have a revealing relation to certain aspects of QCD.Comment: 35 pages in REVTeX, 25 PostScript figure
Genome landscapes and bacteriophage codon usage
Across all kingdoms of biological life, protein-coding genes exhibit unequal
usage of synonmous codons. Although alternative theories abound, translational
selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns
of codon usage across 74 diverse bacteriophages that infect E. coli, P.
aeruginosa and L. lactis as their primary host. We introduce the concept of a
`genome landscape,' which helps reveal non-trivial, long-range patterns in
codon usage across a genome. We develop a series of randomization tests that
allow us to interrogate the significance of one aspect of codon usage, such a
GC content, while controlling for another aspect, such as adaptation to
host-preferred codons. We find that 33 phage genomes exhibit highly non-random
patterns in their GC3-content, use of host-preferred codons, or both. We show
that the head and tail proteins of these phages exhibit significant bias
towards host-preferred codons, relative to the non-structural phage proteins.
Our results support the hypothesis of translational selection on viral genes
for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
- …