46 research outputs found
Radioactive Holmium Acetylacetonate Microspheres for Interstitial Microbrachytherapy: An In Vitro and In Vivo Stability Study
Purpose The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted. Methods HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37°C for 6 months. The in vitro release of holmium in this buffer after 6 months was 0.5%. Elemental analysis, scanning electron microscopy, infrared spectroscopy and time of flight secondary ion mass spectrometry were performed on the HoAcAcMS. Results After 4 days in buffer the acetylacetonate ligands were replaced by phosphate, without altering the particle size and surface morphology. HoAcAcMS before and after neutron irradiation were administered intratumorally in VX2 tumor-bearing rabbits. No holmium was detected in the faeces, urine, femur and blood. Histological examination of the tumor revealed clusters of intact microspheres amidst necrotic tissue after 30 days. Conclusion HoAcAcMS are stable both in vitro and in vivo and are suitable for intratumoral radionuclide treatment.Radiation, Radionuclides and ReactorsApplied Science
Quantitative Evaluation of Scintillation Camera Imaging Characteristics of Isotopes Used in Liver Radioembolization
Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared.Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions.The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies
Holmium Nanoparticles: Preparation and In Vitro Characterization of a New Device for Radioablation of Solid Malignancies
# The Author(s) 2010. This article is published with open access at Springerlink.com Purpose The present study introduces the preparation and in vitro characterization of a nanoparticle device comprising holmium acetylacetonate for radioablation of unresectable solid malignancies. Methods HoAcAc nanoparticles were prepared by dissolving holmium acetylacetonate in chloroform, followed by emulsification in an aqueous solution of a surfactant and evaporation of W. Bult: R. Varkevisser: P. R. Luijten: A. D. van het Schip
A-site cation-vacancy ordering in Sr1-3x/2LaxTiO3: A study by HRTEM
The system Sr(1-3x/2)La(x)TiO3 (0.25 ≤ x ≤ 0.6) has been studied by high-resolution transmission electron microscopy, allowing the direct observation of vacant sites on the Sr/La sublattice of the perovskite structure. Isolated vacancies are observed in 2D structural projections of samples having x ~ 0.3. Vacancy pairing occurs with increasing La concentration, followed by the formation of vacancy squares of side 2a0 and vacancy rectangles 2a0xa0. The latter signify vacancy ordering in an orthorhombic superstructure, and the former are considered to derive from orthogonal superstructure microdomains. The details of the ordering are sensitive to the heat treatment used during preparation of the sample. (C) 2000 Academic Press
Neutron diffraction study of the structural and electronic properties of Sr2HoMn2O7 and Sr2YMn2O7
The crystal structures of Sr2HoMn2O7 and Sr2YMn2O7 have been determined at 290 and 1.7 K from neutron and X-ray powder diffraction data. Both are distorted Ruddlesden-Popper structures formed by the intergrowth of rock-salt-like layers and perovskite-like blocks of tilted MnO6 octahedra (space group P42/mnm; for Ho at 290 Ka = 5.40388(5), c = 19.9050-(2) Ã…). The majority of the lanthanide cations are located in the rock-salt layers. Neither structure changes significantly on cooling to 1.7 K. There is evidence for neither charge ordering of Mn3+ and Mn4+ cations nor for long-range magnetic ordering. The magnetic susceptibility maximum observed previously is thus confirmed as signifying a transition to a spin-glass phase. The behavior of these compounds is contrasted with that of other Mn oxides which show long-range magnetic order and colossal magnetoresistance
Chemistry of naturally layered manganites
Experiments on three double-layer (n=2) Ruddlesden-Popper (RP) systems are reported. Doping Sr1.8La1.2Mn2O7 (T-c = 126 K) with Nd to form Sr1.8La1.2-xNdxMn2O7 leads to a reduction in Curie temperature for low doping levels (x = 0.2), and to behavior reminiscent of Sr1.8Nd1.2Mn2O7 for x greater than or equal to 0.7. This suggests that it may be possible to control the temperature of maximum magnetoresistance chemically in these phases. The application of pressure (0 < P/GPa less than or equal to 1.8) is shown to modify the magnetotransport properties of Sr2NdMn2O7 to resemble those of Sr1.9Nd1.1Mn2O7. The changes can be explained by considering the relative strength of ferromagnetic and antiferromagnetic interactions within the material. Finally, the need for careful phase analysis of n = 2 RP materials is demonstrated by the misleading magnetization data recorded for a sample of Sr1.8Sm1.2Mn2O7 containing similar to 2.8% of an n = infinity perovskite phase. (C) 1998 American Institute of Physics. [S0021-8979(98)20911-X]