51 research outputs found

    Evidence for an association of HLA-DRB1*15 and DRB1*09 with leprosy and the impact of DRB1*09 on disease onset in a Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human leukocyte antigens (HLAs) have been proposed to modulate the immune response to <it>Mycobacterium leprae</it>. The association of HLA-DRB1 with leprosy has been reported in several populations, but not in a Chinese population.</p> <p>Methods</p> <p>The polymerase chain reaction-sequence-specific oligonucleotide probe with Luminex100 (PCR-SSOP-Luminex) method was used to genotype HLA-DRB1 alleles in 305 leprosy patients and 527 healthy control individuals.</p> <p>Results</p> <p>The HLA-DRB1*15 allele was significantly more prevalent among leprosy patients than healthy controls, whereas the frequency of the HLA-DRB1*09 allele was lower among leprosy patients, especially those with early-onset disease.</p> <p>Conclusion</p> <p>HLA-DRB1 alleles are associated with leprosy susceptibility in a Chinese population. The HLA-DRB1*09 allele was found to be protective exclusively in a subset of early-onset leprosy patients.</p

    A case of mistaken identity: HSPs are no DAMPs but DAMPERs

    Get PDF
    Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1–5, 2007; Kono and Rock, Nat Rev Immunol 8:279–289, 2008; Martin-Murphy et al., Toxicol Lett 192:387–394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395–1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue

    Identification of proteins involved in neural progenitor cell targeting of gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model.</p> <p>Methods</p> <p>Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed <it>in vitro </it>assays to mimic the antitumor effect seen <it>in vivo</it>.</p> <p>Results</p> <p>We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. <it>In vitro </it>co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines <it>in vitro</it>.</p> <p>Conclusion</p> <p>These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.</p

    PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence

    Get PDF
    Inactivation of the transcriptional regulator PhoP results in Mycobacterium tuberculosis attenuation. Preclinical testing has shown that attenuated M. tuberculosis phoP mutants hold promise as safe and effective live vaccine candidates. We focused this study to decipher the virulence networks regulated by PhoP. A combined transcriptomic and proteomic analysis revealed that PhoP controls a variety of functions including: hypoxia response through DosR crosstalking, respiratory metabolism, secretion of the major T-cell antigen ESAT-6, stress response, synthesis of pathogenic lipids and the M. tuberculosis persistence through transcriptional regulation of the enzyme isocitrate lyase. We also demonstrate that the M. tuberculosis phoP mutant SO2 exhibits an antigenic capacity similar to that of the BCG vaccine. Finally, we provide evidence that the SO2 mutant persists better in mouse organs than BCG. Altogether, these findings indicate that PhoP orchestrates a variety of functions implicated in M. tuberculosis virulence and persistence, making phoP mutants promising vaccine candidates

    Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Roseobacter litoralis </it>OCh149, the type species of the genus, and <it>Roseobacter denitrificans </it>OCh114 were the first described organisms of the <it>Roseobacter </it>clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.</p> <p>Results</p> <p>The genome of <it>R. litoralis </it>OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for <it>R. litoralis</it>, 1122 (24.7%) are not present in the genome of <it>R. denitrificans</it>. Many of the unique genes of <it>R. litoralis </it>are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of <it>R. denitrificans</it>. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of <it>R. litoralis</it>. In contrast to <it>R. denitrificans</it>, the photosynthesis genes of <it>R. litoralis </it>are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the <it>Roseobacter </it>clade revealed several genomic regions that were only conserved in the two <it>Roseobacter </it>species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in <it>R. litoralis </it>differed from the phenotype.</p> <p>Conclusions</p> <p>The genomic differences between the two <it>Roseobacter </it>species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of <it>R. denitrifcans </it>(pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of <it>R. litoralis </it>is probably regulated by nutrient availability.</p

    At the poles across kingdoms: phosphoinositides and polar tip growth

    Full text link

    Using genetically encoded fluorescent reporters to image lipid signalling in living plants.

    No full text
    The discovery of the green fluorescent protein has revolutionized cell biology as it allowed researchers to visualize dynamic processes in living cells. The fusion of fluorescent protein variants with lipid binding domains that bind to specific phospholipids have been very instrumental in investigating the role of these molecules in living plants. Here, we describe the use of these reporters to image lipids in living Arabidopsis seedlings using fluorescence microscopy
    corecore