36 research outputs found

    Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this study was to estimate the effect of supplementation with <it>Saccaromyces cerevisiae (SC</it>) (Yea-Sacc<sup>® </sup>1026) on milk production, metabolic parameters and the resumption of ovarian activity in early lactation dairy cows.</p> <p>Methods</p> <p>The experiment was conducted during 2005/2006 in a commercial tied-house farm with an average of 200 milking Estonian Holstein Friesian cows. The late pregnant multiparous cows (n = 46) were randomly divided into two groups; one group received 10 g yeast culture from two weeks before to 14 weeks after calving. The groups were fed a total mixed ration with silages and concentrates. Milk recording data and blood samples for plasma metabolites were taken. Resumption of luteal activity was determined using milk progesterone (P<sub>4</sub>) measurements. Uterine bacteriology and ovarian ultrasonography (US) were performed and body condition scores (BCS) and clinical disease occurrences were recorded. For analysis, the statistical software Stata 9.2 and R were used to compute Cox proportional hazard and linear mixed models.</p> <p>Results</p> <p>The average milk production per cow did not differ between the groups (32.7 ± 6.4 vs 30.7 ± 5.3 kg/day in the SC and control groups respectively), but the production of milk fat (<it>P </it>< 0.001) and milk protein (<it>P </it>< 0.001) were higher in the SC group. There was no effect of treatment on BCS. The analysis of energy-related metabolites in early lactation showed no significant differences between the groups. In both groups higher levels of β-hydroxybutyrate (BHB) appeared from days 14 to 28 after parturition and the concentration of non-esterfied fatty acid (NEFA) was higher from days 1–7 post partum (PP). According to US and P<sub>4 </sub>results, all cows in both groups ovulated during the experimental period. The resumption of ovarian activity (first ovulations) and time required for elimination of bacteria from the uterus did not differ between the groups.</p> <p>Conclusion</p> <p>Supplementation with SC had an effect on milk protein and fat production, but did not influence the milk yield. No effects on PP metabolic status, bacterial elimination from the uterus nor the resumption of ovarian activity were found.</p

    A prebiotic, Celmanax™, decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>O157:H7 is the most common serovar of enterohemorrhagic <it>E. coli </it>associated with serious human disease outbreaks. Cattle are the main reservoir with <it>E. coli </it>O157:H7 inducing hemorrhagic enteritis in persistent shedding beef cattle, however little is known about how this pathogen affects cattle health. Jejunal Hemorrhage Syndrome (JHS) has unclear etiology but the pathology is similar to that described for <it>E. coli </it>O157:H7 challenged beef cattle suggestive that <it>E. coli </it>O157:H7 could be involved. There are no effective treatments for JHS however new approaches to managing pathogen issues in livestock using prebiotics and probiotics are gaining support. The first objective of the current study was to characterize pathogen colonization in hemorrhaged jejunum of dairy cattle during natural JHS outbreaks. The second objective was to confirm the association of mycotoxigenic fungi in feeds with the development of JHS and also to identify the presence of potential mycotoxins. The third objective was to determine the impact of a prebiotic, Celmanax™, or probiotic, Dairyman's Choice™ paste, on the cytotoxicity associated with feed extracts <it>in vitro</it>. The fourth objective was to determine the impact of a prebiotic or a probiotic on <it>E. coli </it>O157:H7 colonization of mucosal explants and a bovine colonic cell line <it>in vitro</it>. The final objective was to determine if prebiotic and probiotic feed additives could modify the symptoms that preceded JHS losses and the development of new JHS cases.</p> <p>Findings</p> <p>Dairy cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including <it>Fusarium culmorum</it>, <it>F. poae</it>, <it>F. verticillioides</it>, <it>F. sporotrichioides</it>, <it>Aspergillus</it><it>flavus</it>, <it>Penicillium roqueforti, P. crustosum, P. paneum </it>and <it>P. citrinum</it>. Mixtures of Shiga toxin - producing <it>Escherichia coli </it>(STEC) colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood clot blocking the jejunum. Mycotoxin analysis of the corn crop confirmed the presence of fumonisin, NIV, ZEAR, DON, 15-ADON, 3-ADON, NEO, DAS, HT-2 and T-2. Feed extracts were toxic to enterocytes and 0.1% Celmanax™ removed the cytotoxicity <it>in vitro</it>. There was no effect of Dairyman's Choice™ paste on feed-extract activity <it>in vitro</it>. Fumonisin, T-2, ZEAR and DON were toxic to bovine cells and 0.1% Celmanax™ removed the cytotoxicity <it>in vitro</it>. Celmanax™ also directly decreased <it>E. coli </it>O157:H7 colonization of mucosal explants and a colonic cell line in a dose-dependent manner. There was no effect of Dairyman's Choice™ paste on <it>E. coli </it>O157:H7 colonization <it>in vitro</it>. The inclusion of the prebiotic and probiotic in the feed was associated with a decline in disease.</p> <p>Conclusion</p> <p>The current study confirmed an association between mycotoxigenic fungi in the feed and the development of JHS in cattle. This association was further expanded to include mycotoxins in the feed and mixtures of STECs colonizing the severely hemorrhaged tissues. Future studies should examine the extent of involvement of the different STEC in the infection process. The prebiotic, Celmanax™, acted as an anti-adhesive for STEC colonization and a mycotoxin binder <it>in vitro</it>. Future studies should determine the extent of involvement of the prebiotic in altering disease.</p

    Barley grain for ruminants: A global treasure or tragedy

    Get PDF
    <p>Abstract</p> <p>Barley grain (<it>Hordeum vulgare L.</it>) is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0); below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken), consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment.</p
    corecore