39 research outputs found

    Mutation of the p16/CDKN2 gene and loss of heterozygosity in malignant mucosal melanoma and adenoid cystic carcinoma of the head and neck

    Get PDF
    博士(歯学)・第1738号(甲第1018号)・平成19年3月31日http://www.spandidos-publications.com/ijo/article.jsp?article_id=ijo_31_5_106

    Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT), a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas.</p> <p>Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons.</p> <p>First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective.</p> <p>Methods Design</p> <p>In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD) of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy.</p> <p>Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival.</p> <p>Discussion</p> <p>The Cinderella trial is the first study to evaluate carbon ion radiotherapy for recurrent gliomas, and to compare this treatment to photon FSRT in a randomized setting using an ion beam delivered by intensity modulated rasterscanning.</p> <p>Trial Registration</p> <p>NCT01166308</p

    MEK–ERK-dependent multiple caspase activation by mitochondrial proapoptotic Bcl-2 family proteins is essential for heavy ion irradiation-induced glioma cell death

    Get PDF
    Recently developed heavy ion irradiation therapy using a carbon beam (CB) against systemic malignancy has numerous advantages. However, the clinical results of CB therapy against glioblastoma still have room for improvement. Therefore, we tried to clarify the molecular mechanism of CB-induced glioma cell death. T98G and U251 human glioblastoma cell lines were irradiated by CB, and caspase-dependent apoptosis was induced in both cell lines in a dose-dependent manner. Knockdown of Bax (BCL-2-associated X protein) and Bak (BCL-2-associated killer) and overexpression of Bcl-2 or Bcl-xl (B-cell lymphoma-extra large) showed the involvement of Bcl-2 family proteins upstream of caspase activation, including caspase-8, in CB-induced glioma cell death. We also detected the activation of extracellular signal-regulated kinase (ERK) and the knockdown of ERK regulator mitogen-activated protein kinase kinase (MEK)1/2 or overexpression of a dominant-negative (DN) ERK inhibited CB-induced glioma cell death upstream of the mitochondria. In addition, application of MEK-specific inhibitors for defined periods showed that the recovery of activation of ERK between 2 and 36 h after irradiation is essential for CB-induced glioma cell death. Furthermore, MEK inhibitors or overexpression of a DN ERK failed to significantly inhibit X-ray-induced T98G and U251 cell death. These results suggested that the MEK–ERK cascade has a crucial role in CB-induced glioma cell death, which is known to have a limited contribution to X-ray-induced glioma cell death

    Combined treatment of malignant salivary gland tumours with intensity-modulated radiation therapy (IMRT) and carbon ions: COSMIC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Local control in malignant salivary gland tumours is dose dependent. High local control rates in adenoid cystic carcinomas could be achieved by highly conformal radiotherapy techniques and particle (neutron/carbon ion) therapy. Considering high doses are needed to achieve local control, all malignant salivary gland tumours probably profit from the use of particle therapy, which in case of carbon ion treatment, has been shown to be accompanied by only mild side-effects.</p> <p>Methods/design</p> <p>The COSMIC trial is a prospective, mono-centric, phase II trial evaluating toxicity (primary endpoint: mucositis ≥ CTCAE°3) and efficacy (secondary endpoint: local control, disease-free survival) in the combined treatment with IMRT and carbon ion boost in 54 patients with histologically proved (≥R1-resected, inoperable or Pn+) salivary gland malignancies. Patients receive 24 GyE carbon ions (8 fractions) and IMRT (50 Gy at 2.0 Gy/fraction).</p> <p>Discussion</p> <p>The primary objective of COSMIC is to evaluate toxicity and feasibility of the proposed treatment in all salivary gland malignancies.</p> <p>Trial Registration</p> <p>Clinical trial identifier NCT 01154270</p

    Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV) patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE) vs. a proton boost (10 GyE) in addition to photon radiotherapy (50 Gy), the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II), a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy.</p> <p>This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas.</p> <p>Methods</p> <p>33 patients with gliomas (n = 26) and meningiomas (n = 7) were treated with carbon ion (n = 26) and proton (n = 7) radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0.</p> <p>Results</p> <p>Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%), intermittent cranial nerve symptoms (6%) and single episodes of seizures (6%). At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient.</p> <p>Conclusions</p> <p>Particle radiotherapy is safe and feasible in patients with primary brain tumors. It is associated with little toxicity. A positive response of both gliomas and meningiomas, which is suggested in these preliminary data, must be evaluated in further clinical trials.</p

    Combined treatment of adenoid cystic carcinoma with cetuximab and IMRT plus C12 heavy ion boost: ACCEPT [ACC, Erbitux® and particle therapy]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Local control in adjuvant/definitive RT of adenoid cystic carcinoma (ACC) is largely dose-dependent leading to the establishment of particle therapy in this indication. However, even modern techniques leave space for improvement of local control by intensification of local treatment. Radiation sensitization by exploitation of high EGFR-expression in ACC with the EGFR receptor antibody cetuximab seems promising.</p> <p>Methods/design</p> <p>The ACCEPT trial is a prospective, mono-centric, phase I/II trial evaluating toxicity (primary endpoint: acute and late effects) and efficacy (secondary endpoint: local control, distant control, disease-free survival, overall survival) of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 49 patients with histologically proven (≥R1-resected, inoperable or Pn+) ACC. Patients receive 18 GyE carbon ions (6 fractions) and 54 Gy IMRT (2.0 Gy/fraction) in combination with weekly cetuximab throughout radiotherapy.</p> <p>Discussion</p> <p>The primary objective of ACCEPT is to evaluate toxicity and feasibility of cetuximab and particle therapy in adenoid cystic carcinoma.</p> <p>Trial Registration</p> <p>Clinical Trial Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01192087">NCT 01192087</a></p> <p>EudraCT number: 2010 - 022425 - 15</p

    Raster-scanned carbon ion therapy for malignant salivary gland tumors: acute toxicity and initial treatment response

    Get PDF
    <p>Abstract</p> <p>Background and purpose</p> <p>To investigate toxicity and efficacy in high-risk malignant salivary gland tumors (MSGT) of the head and neck. Local control in R2-resected adenoid cystic carcinoma was already improved with a combination of IMRT and carbon ion boost at only mild side-effects, hence this treatment was also offered to patients with MSGT and microscopic residual disease (R1) or perineural spread (Pn+).</p> <p>Methods</p> <p>From November 2009, all patients with MSGT treated with carbon ion therapy were evaluated. Acute side effects were scored according to CTCAE v.4.03. Tumor response was assessed according to RECIST where applicable.</p> <p>Results</p> <p>103 patients were treated from 11/2009 to 03/2011, median follow-up is 6 months. 60 pts received treatment following R2 resections or as definitive radiation, 43 patients received adjuvant radiation for R1 and/or Pn+. 16 patients received carbon ion treatment for re-irradiation. Median total dose was 73.2 GyE (23.9 GyE carbon ions + 49,9 Gy IMRT) for primary treatment and 44.9 GyE carbon ions for re-irradiation. All treatments were completed as planned and generally well tolerated with no > CTC°III toxicity. Rates of CTC°III toxicity (mucositis and dysphagia) were 8.7% with side-effects almost completely resolved at first follow-up.</p> <p>47 patients showed good treatment responses (CR/PR) according to RECIST.</p> <p>Conclusion</p> <p>Acute toxicity remains low in IMRT with carbon ion boost also in R1-resected patients and patients undergoing re-irradiation. R2-resected patients showed high rates of treatment response, though follow-up is too short to assess long-term disease control.</p

    RadioImmunotherapy for adenoid cystic carcinoma: a single-institution series of combined treatment with cetuximab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Local control in adjuvant/definitive RT of adenoid cystic carcinoma (ACC) is largely dose-dependent. However, some clinical situations do not allow application of tumouricidal doses (i.e. re-irradiation) hence radiation sensitization by exploitation of high endothelial growth factor receptor (EGFR)-expression in ACC seems beneficial. This is a single-institution experience of combined radioimmunotherapy (RIT) with the EGFR-inhibitor cetuximab.</p> <p>Methods</p> <p>Between 2006 and 2010, 9 pts received RIT for advanced/recurrent ACC, 5/9 pts as re-irradiation. Baseline characteristics as well as treatment parameters were retrieved to evaluate efficacy and toxicity of the combination regimen were evaluated. Control rates (local/distant) and overall survival were calculated using Kaplan-Meier estimation.</p> <p>Results</p> <p>Median dose was 65 Gy, pts received a median of 6 cycles cetuximab. RIT was tolerated well with only one °III mucositis/dysphagia. Overall response/remission rates were high (77,8%); 2-year estimate of local control was 80% hence reaching local control levels comparable to high-dose RT. Progression-free survival (PFS) at 2 years and median overall survival were only 62,5% and 22,2 mo respectively.</p> <p>Conclusion</p> <p>While local control and treatment response in RIT seems promising, PFS and overall survival are still hampered by distant failure. The potential benefit of RIT with cetuximab warrants exploration in a prospective controlled clinical trial.</p
    corecore