61 research outputs found

    Psychiatric diagnoses and punishment for misconduct: the effects of PTSD in combat-deployed Marines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research on Vietnam veterans suggests an association between psychological problems, including posttraumatic stress disorder (PTSD), and misconduct; however, this has rarely been studied in veterans of Operation Iraqi Freedom or Operation Enduring Freedom. The objective of this study was to investigate whether psychological problems were associated with three types of misconduct outcomes (demotions, drug-related discharges, and punitive discharges.)</p> <p>Methods</p> <p>A population-based study was conducted on all U.S. Marines who entered the military between October 1, 2001, and September 30, 2006, and deployed outside of the United States before the end of the study period, September 30, 2007. Demographic, psychiatric, deployment, and personnel information was collected from military records. Cox proportional hazards regression analysis was conducted to investigate associations between the independent variables and the three types of misconduct in war-deployed (n = 77 998) and non-war-deployed (n = 13 944) Marines.</p> <p>Results</p> <p>Marines in both the war-deployed and non-war-deployed cohorts with a non-PTSD psychiatric diagnosis had an elevated risk for all three misconduct outcomes (hazard ratios ranged from 3.93 to 5.65). PTSD was a significant predictor of drug-related discharges in both the war-deployed and non-war-deployed cohorts. In the war-deployed cohort only, a specific diagnosis of PTSD was associated with an increased risk for both demotions (hazard ratio, 8.60; 95% confidence interval, 6.95 to 10.64) and punitive discharges (HR, 11.06; 95% CI, 8.06 to 15.16).</p> <p>Conclusions</p> <p>These results provide evidence of an association between PTSD and behavior problems in Marines deployed to war. Moreover, because misconduct can lead to disqualification for some Veterans Administration benefits, personnel with the most serious manifestations of PTSD may face additional barriers to care.</p

    Potential of poly(styrene-co-divinylbenzene) monolithic columns for the LC-MS analysis of protein digests

    Get PDF
    Two polystyrene-based capillary monolithic columns of different length (50 and 250 mm) were used to evaluate the effects of column length on gradient separation of protein digests. A tryptic digest of a 9-protein mixture was used as a test sample. Peak capacities were determined from selected extracted ion chromatograms, and tandem mass spectrometry data were used for database matching using the MASCOT search engine. Peak capacities and protein identification scores were higher for the long column with all gradients. Peak capacities appear to approach a plateau for longer gradient times; maximum peak capacity was estimated to be 294 for the short column and 370 for the long column. Analyses with similar gradient slope produced a ratio of the peak capacities of 3.36 for the long and the short column, which is slightly higher than the expected value of the square root of the column length ratio. The use of a longer monolith improves peptide separation, as reflected by higher peak capacity, and also increases protein identification, as observed from higher identification scores and a larger number of identified peptides. Attention has also been paid to the peak production rate (PPR, peak capacity per unit time). For short analysis times, the short column produces a higher PPR, while for analysis times longer than 40 min, the PPR of the 250-mm column is higher

    Cytocompatibility of Medical Biomaterials Containing Nickel by Osteoblasts: a Systematic Literature Review

    Get PDF
    The present review is based on a survey of 21 studies on the cytocompatibility of medical biomaterials containing nickel, as assessed by cell culture of human and animal osteoblasts or osteoblast-like cells. Among the biomaterials evaluated were stainless steel, NiTi alloys, pure Ni, Ti, and other pure metals. The materials were either commercially available, prepared by the authors, or implanted by various techniques to generate a protective layer of oxides, nitrides, acetylides. The observation that the layers significantly reduced the initial release of metal ions and increased cytocompatibility was confirmed in cell culture experiments. Physical and chemical characterization of the materials was performed. This included, e.g., surface characterization (roughness, wettability, corrosion behavior, quantity of released ions, microhardness, and characterization of passivation layer). Cytocompatibility tests of the materials were conducted in the cultures of human or animal osteoblasts and osteoblast-like cells. The following assays were carried out: cell proliferation and viability test, adhesion test, morphology (by fluorescent microscopy or SEM). Also phenotypic and genotypic markers were investigated. In the majority of works, it was found that the most cytocompatible materials were stainless steel and NiTi alloy. Pure Ni was rendered and less cytocompatible. All the papers confirmed that the consequence of the formation of protective layers was in significant increase of cytocompatibility of the materials. This indicates the possible further modifications of the manufacturing process (formation of the passivation layer)

    Prise en charge des voies aériennes – 1re partie – Recommandations lorsque des difficultés sont constatées chez le patient inconscient/anesthésié

    Get PDF
    corecore