20 research outputs found

    Measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and des

    Get PDF
    We infer the mean optical depth of a sample of optically selected galaxy clusters from the Dark Energy Survey via the pairwise kinematic Sunyaev-Zel'dovich (KSZ) effect. The pairwise KSZ signal between pairs of clusters drawn from the Dark Energy Survey Year-3 cluster catalog is detected at 4.1σ in cosmic microwave background temperature maps from two years of observations with the SPT-3G camera on the South Pole Telescope. After cuts, there are 24,580 clusters in the ∼1,400 deg2 of the southern sky observed by both experiments. We infer the mean optical depth of the cluster sample with two techniques. The optical depth inferred from the pairwise KSZ signal is τ¯e=(2.97±0.73)×10-3, while that inferred from the thermal SZ signal is τ¯e=(2.51±0.55stat±0.15syst)×10-3. The two measures agree at 0.6σ. We perform a suite of systematic checks to test the robustness of the analysis

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices

    Get PDF
    Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S8=σ8ωm/0.3 at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints

    Get PDF
    We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find ωm=0.344±0.030 and S8σ8(ωm/0.3)0.5=0.773±0.016, assuming ΛCDM. When additionally combining with measurements of the CMB lensing autospectrum, we find ωm=0.306-0.021+0.018 and S8=0.792±0.012. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redmagic galaxies and high-redshift maglim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints

    Get PDF
    Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of ωm=0.272-0.052+0.032 and S8σ8ωm/0.3=0.736-0.028+0.032 (ωm=0.245-0.044+0.026 and S8=0.734-0.028+0.035) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find ωm=0.270-0.061+0.043 and S8=0.740-0.029+0.034. Our constraints on S8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck

    Traumatic entrapment, appeasement and complex post-traumatic stress disorder: evolutionary perspectives of hostage reactions, domestic abuse and the Stockholm syndrome

    No full text
    Evolutionary theory and cross-species comparisons are explored to shed new insights into behavioural responses to traumatic entrapment, examining their relationships to the Stockholm syndrome (a specific response to traumatic entrapment) and complex post-traumatic stress disorder (PTSD). A selective literature review is undertaken examining responses to traumatic entrapment (including hostage, domestic abuse and similar situations) and the Stockholm syndrome, before examining mammalian, reptilian and other defensive responses to relevant threats. Chimpanzees, the closest relatives of humans, are closely examined from this perspective and commonalities in behavioural responses are highlighted. The neurobiological basis of defensive behaviours underlying PTSD is explored with reference to the triune brain model. Victims of protracted traumatic entrapment under certain circumstances may display the Stockholm syndrome, which involves paradoxically positive relationships with their oppressors that may persist beyond release. Similar responses are observed in many mammalian species, especially primates. Ethological concepts including dominance hierarchies, reverted escape, de-escalation and conditional reconciliation appear relevant and are illustrated. These phenomena are commonly encountered in victims of severe abuse and understanding these concepts may assist clinical management. Appeasement is the mammalian defence most relevant to the survival challenge presented by traumatic entrapment and appears to be the foundation of complex PTSD. Evolutionary perspectives have considerable potential to bridge and integrate neurobiology and the social sciences with respect to traumatic stress responses
    corecore