689 research outputs found

    Anaphylactic reaction associated with Ranitidine in a patient with acute pancreatitis: a case report

    Get PDF
    Ranitidine is a widely used drug and is known to be well tolerated. This case report illustrates a severe anaphylactic reaction after a single intravenous dose of 50 mgs of ranitidine and highlights this unusual but life threatening adverse reaction

    Multi-scenario modelling of learning

    Get PDF
    International audienceDesigning an educational scenario is a sensitive and challenging activity because it is the vector of learning. However, the designed scenario may not correspond to some learners’ characteristics (pace of work, cognitive styles, emotional factors, prerequisite knowledge, …). To personalize the learning task and adapt it gradually to each learner, several scenarios are needed. Adaptation and personalization are difficult because it is necessary on the one hand to know in advance the profiles and on the other hand to produce the multiple scenarios corresponding to these profiles. Our model allows to design many scenarios without knowing the learner profiles beforehand. Furthermore, it offers each learner opportunities to choose a scenario and to change it during their learning process. The model ensures that all announced objectives have enough resources for acquiring knowledge and activities for evaluation

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Self-reported diabetes is associated with self-management behaviour: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purposes of this cohort study were to establish how frequently people with physician-diagnosed diabetes self-reported the disease, to determine factors associated with self-reporting of diabetes, and to evaluate subsequent differences in self-management behaviour, health care utilisation and clinical outcomes between people who do and do not report their disease.</p> <p>Methods</p> <p>We used a registry of physician-diagnosed diabetes as a reference standard. We studied respondents to a 2000/01 population-based health survey who were in the registry (n = 1,812), and we determined the proportion who reported having diabetes during the survey. Baseline factors associated with self-report and subsequent behavioural, utilisation and clinical differences between those who did and did not self-report were defined from the survey responses and from linkage with administrative data sources.</p> <p>Results</p> <p>Only 75% of people with physician-diagnosed diabetes reported having the disease. People who did self-report were more likely to be male, to live in rural areas, to have longer disease duration and to have received specialist physician care. People who did not report having diabetes in the survey were markedly less likely to perform capillary blood glucose monitoring in the subsequent two years (OR 0.05, 95% CI 0.02 to 0.08). They were also less likely to receive specialist physician care (OR 0.55, 95% CI 0.37 to 0.86), and were less likely to require hospital care for hypo- or hyperglycaemia (OR 0.09, 95% CI 0.01 to 0.28).</p> <p>Conclusion</p> <p>Many people with physician-diagnosed diabetes do not report having the disease, but most demographic and clinical features do not distinguish these individuals. These individuals are much less likely to perform capillary glucose monitoring, suggesting that their diabetes self-management is inadequate. Clinicians may be able to use the absence of glucose monitoring as a screening tool to identify people needing a detailed evaluation of their disease knowledge.</p

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    Translating clinical training into practice in complex mental health systems: Toward opening the 'Black Box' of implementation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Implementing clinical training in a complex health care system is challenging. This report describes two successive trainings programs in one Veterans Affairs healthcare network and the lessons we drew from their success and failures. The first training experience led us to appreciate the value of careful implementation planning while the second suggested that use of an external facilitator might be an especially effective implementation component. We also describe a third training intervention in which we expect to more rigorously test our hypothesis regarding the value of external facilitation.</p> <p>Results</p> <p>Our experiences appear to be consonant with the implementation model proposed by Fixsen. In this paper we offer a modified version of the Fixsen model with separate components related to training and implementation.</p> <p>Conclusion</p> <p>This report further reinforces what others have noted, namely that educational interventions intended to change clinical practice should employ a multilevel approach if patients are to truly benefit from new skills gained by clinicians. We utilize an implementation research model to illustrate how the aims of the second intervention were realized and sustained over the 12-month follow-up period, and to suggest directions for future implementation research. The present report attests to the validity of, and contributes to, the emerging literature on implementation research.</p

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    The MDT-15 Subunit of Mediator Interacts with Dietary Restriction to Modulate Longevity and Fluoranthene Toxicity in Caenorhabditis elegans

    Get PDF
    Dietary restriction (DR), the limitation of calorie intake while maintaining proper nutrition, has been found to extend life span and delay the onset of age-associated disease in a wide range of species. Previous studies have suggested that DR can reduce the lethality of environmental toxins. To further examine the role of DR in toxin response, we measured life spans of the nematode Caenorhabditis elegans treated with the mutagenic polyaromatic hydrocarbon, fluoranthene (FLA). FLA is a direct byproduct of combustion, and is one of U.S. Environmental Protection Agency's sixteen priority environmental toxins. Treatment with 5 µg/ml FLA shortened the life spans of ad libitum fed nematodes, and DR resulted in increased sensitivity to FLA. To determine the role of detoxifying enzymes in the toxicity of FLA, we tested nematodes with mutations in the gene encoding the MDT-15 subunit of mediator, a transcriptional coactivator that regulates genes involved in fatty acid metabolism and detoxification. Mutation of mdt-15 increased the life span of FLA treated animals compared to wild-type animals with no difference observed between DR and ad libitum fed mdt-15 animals. We also examined mutants with altered insulin-IGF-1-like signaling (IIS), which is known to modulate life span and stress resistance in C. elegans independently of DR. Mutation of the genes coding for the insulin-like receptor DAF-2 or the FOXO-family transcription factor DAF16 did not alter the animals' susceptibility to FLA compared to wild type. Taken together, our results suggest that certain compounds have increased toxicity when combined with a DR regimen through increased metabolic activation. This increased metabolic activation appears to be mediated through the MDT-15 transcription factor and is independent of the IIS pathway

    Altered Metabolism and Persistent Starvation Behaviors Caused by Reduced AMPK Function in Drosophila

    Get PDF
    Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK), a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the gamma subunit (AMPKγ) and through expression of a dominant negative alpha (AMPKα) variant in Drosophila melanogaster. Reduced AMPK signaling leads to hypersensitivity to starvation conditions as measured by lifespan and locomotor activity. Locomotor levels in flies with reduced AMPK function were lower during unstressed conditions, but starvation-induced hyperactivity, an adaptive response to encourage foraging, was significantly higher than in wild type. Unexpectedly, total dietary intake was greater in animals with reduced AMPK function yet total triglyceride levels were lower. AMPK mutant animals displayed starvation-like lipid accumulation patterns in metabolically key liver-like cells, oenocytes, even under fed conditions, consistent with a persistent starved state. Measurements of O2 consumption reveal that metabolic rates are greater in animals with reduced AMPK function. Lastly, rapamycin treatment tempers the starvation sensitivity and lethality associated with reduced AMPK function. Collectively, these results are consistent with models that AMPK shifts energy usage away from expenditures into a conservation mode during nutrient-limited conditions at a cellular level. The highly conserved AMPK subunits throughout the Metazoa, suggest such findings may provide significant insight for pharmaceutical strategies to manipulate AMPK function in humans
    corecore