8,367 research outputs found

    UK COVID-19 lockdown: 100 days of air pollution reduction?

    Get PDF
    On the 23 March 2020, a country-wide COVID-19 lockdown was imposed on the UK. The following 100 days saw anthropogenic movements quickly halt, before slowly easing back to a “new” normality. In this short communication, we use data from official UK air-quality sensors (DEFRA AURN) and the UK Met Office stations to show how lockdown measures affected air quality in the UK. We compare the 100 days post-lockdown (23 March to 30 June 2020) with the same period from the previous 7 years. We find, as shown in numerous studies of other countries, the nitrogen oxides levels across the country dropped substantially (∼ 50%). However, we also find the ozone levels increased (∼ 10%), and the levels of sulphur dioxide more than doubled across the country. These changes, driven by a complex balance in the air chemistry near the surface, may reflect the influence of low humidity as suggested by Met Office data, and potentially, the reduction of nitrogen oxides and their interactions with multiple pollutants

    The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5)' GUT in Z12IZ_{12-I} orbifold compactification

    Full text link
    In string compactifications, frequently there appears the anomalous U(1) gauge symmetry which belonged to E8×\timesE8 of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale, just below 101810^{18\,}GeV, by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank anti-symmetric tensor field BMNB_{MN}. Below the compactification scale, there results a global symmetry U(1)anom_{\rm anom} whose charge QanomQ_{\rm anom} is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)anom_{\rm anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, we calculate all the low energy parameters in terms of the vacuum expectation values of the standard model singlets.Comment: 18 pages, 4 figur

    In an in vitro model of human tuberculosis, monocyte-microglial networks regulate matrix metalloproteinase-1 and -3 gene expression and secretion via a p38 mitogen activated protein kinase-dependent pathway.

    Get PDF
    BACKGROUND: Tuberculosis (TB) of the central nervous system (CNS) is characterized by extensive tissue inflammation, driven by molecules that cleave extracellular matrix such as matrix metalloproteinase (MMP)-1 and MMP-3. However, relatively little is known about the regulation of these MMPs in the CNS. METHODS: Using a cellular model of CNS TB, we stimulated a human microglial cell line (CHME3) with conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb). MMP-1 and MMP-3 secretion was detected using ELISAs confirmed with casein zymography or western blotting. Key results of a phospho-array profile that detects a wide range of kinase activity were confirmed with phospho-Western blotting. Chemical inhibition (SB203580) of microglial cells allowed investigation of expression and secretion of MMP-1 and MMP-3. Finally we used promoter reporter assays employing full length and MMP-3 promoter deletion constructs. Student's t-test was used for comparison of continuous variables and multiple intervention experiments were compared by one-way ANOVA with Tukey's correction for multiple pairwise comparisons. RESULTS: CoMTb up-regulated microglial MMP-1 and MMP-3 secretion in a dose- and time-dependent manner. The phospho-array profiling showed that the major increase in kinase activity due to CoMTb stimulation was in p38 mitogen activated protein kinase (MAPK), principally the α and γ subunits. p38 phosphorylation was detected at 15 minutes, with a second peak of activity at 120 minutes. High basal extracellular signal-regulated kinase activity was further increased by CoMTb. Secretion and expression of MMP-1 and MMP-3 were both p38 dependent. CoMTb stimulation of full length and MMP-3 promoter deletion constructs demonstrated up-regulation of activity in the wild type but a suppression site between -2183 and -1612 bp. CONCLUSIONS: Monocyte-microglial network-dependent MMP-1 and MMP-3 gene expression and secretion are dependent upon p38 MAPK in tuberculosis. p38 is therefore a potential target for adjuvant therapy in CNS TB

    K-Bayes Reconstruction for Perfusion MRI II: Modeling and Technical Development

    Get PDF
    Despite the continued spread of magnetic resonance imaging (MRI) methods in scientific studies and clinical diagnosis, MRI applications are mostly restricted to high-resolution modalities such as structural MRI. While perfusion MRI gives complementary information on blood flow in the brain, its reduced resolution limits its power for detecting specific disease effects on perfusion patterns. This reduced resolution is compounded by artifacts such as partial volume effects, Gibbs ringing, and aliasing, which are caused by necessarily limited k-space sampling and the subsequent use of discrete Fourier transform (DFT) reconstruction. Here, a Bayesian modeling procedure (K-Bayes) is developed for the reconstruction of perfusion MRI. The K-Bayes approach combines a process model for the MRI signal in k-space with a Markov random field prior distribution that incorporates high-resolution segmented structural MRI information. A simulation study, described in Part I (Concepts and Applications), was performed to determine qualitative and quantitative improvements in K-Bayes reconstructed images compared with those obtained via DFT. The improvements were validated using in vivo perfusion MRI data of the human brain. The K-Bayes reconstructed images were demonstrated to provide reduced bias, increased precision, greater effect sizes, and higher resolution than those obtained using DFT
    corecore