98 research outputs found
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells
<p>Abstract</p> <p>Background</p> <p>Mushroom polysaccharides have traditionally been used for the prevention and treatment of a multitude of disorders like infectious illnesses, cancers and various autoimmune diseases. Crude mushroom extracts have been tested without detailed chemical analyses of its polysaccharide content. For the present study we decided to chemically determine the carbohydrate composition of semi-purified extracts from 2 closely related and well known basidiomycete species, i.e. <it>Agaricus bisporus </it>and <it>A. brasiliensis </it>and to study their effects on the innate immune system, in particular on the <it>in vitro </it>induction of pro-inflammatory cytokines, using THP-1 cells.</p> <p>Methods</p> <p>Mushroom polysaccharide extracts were prepared by hot water extraction and precipitation with ethanol. Their composition was analyzed by GC-MS and NMR spectroscopy. PMA activated THP-1 cells were treated with the extracts under different conditions and the production of pro-inflammatory cytokines was evaluated by qPCR.</p> <p>Results</p> <p>Semi-purified polysaccharide extracts of <it>A. bisporus </it>and <it>A. brasiliensis </it>(= <it>blazei</it>) were found to contain (1→6),(1→4)-linked α-glucan, (1→6)-linked β-glucan, and mannogalactan. Their proportions were determined by integration of <sup>1</sup>H-NMR signs, and were considerably different for the two species. <it>A. brasiliensis </it>showed a higher content of β-glucan, while <it>A. bisporus </it>presented mannogalactan as its main polysaccharide. The extracts induced a comparable increase of transcription of the pro-inflammatory cytokine genes IL-1β and TNF-α as well as of COX-2 in PMA differentiated THP-1 cells. Pro-inflammatory effects of bacterial LPS in this assay could be reduced significantly by the simultaneous addition of <it>A. brasiliensis </it>extract.</p> <p>Conclusions</p> <p>The polysaccharide preparations from the closely related species <it>A. bisporus </it>and <it>A. brasiliensis </it>show major differences in composition: <it>A. bisporus </it>shows high mannogalactan content whereas <it>A. brasiliensis </it>has mostly β-glucan. Semi-purified polysaccharide extracts from both <it>Agaricus </it>species stimulated the production of pro-inflammatory cytokines and enzymes, while the polysaccharide extract of <it>A. brasiliensis </it>reduced synthesis of these cytokines induced by LPS, suggesting programmable immunomodulation.</p
Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Lu–Hf dating of spinel peridotite lithospheric mantle
Clinopyroxenes in some fresh anhydrous spinel peridotite mantle xenoliths from the northern Massif Central (France) and Lower Silesia (Poland), analysed for a range of incompatible trace elements by laser ablation inductively coupled plasma mass spectrometry, show unusually strong negative anomalies in Hf and Zr relative to adjacent elements Sm and Nd, on primitive mantle-normalised diagrams. Similar Zr–Hf anomalies have only rarely been reported from clinopyroxene in spinel peridotite mantle xenoliths worldwide, and most are not as strong as the examples reported here. Low Hf contents give rise to a wide range of Lu/Hf ratios, which over geological time would result in highly radiogenic εHf values, decoupling them from εNd ratios. The high 176Lu/177Hf could in theory produce an isochronous relationship with 176Hf/177Hf over time; an errorchron is shown by clinopyroxene from mantle xenoliths from the northern Massif Central. However, in a review of the literature, we show that most mantle spinel peridotites do not show such high Lu/Hf ratios in their constituent clinopyroxenes, because they lack the distinctive Zr–Hf anomaly, and this limits the usefulness of the application of the Lu–Hf system of dating to garnet-free mantle rocks. Nevertheless, some mantle xenoliths from Poland or the Czech Republic may be amenable to Hf-isotope dating in the future
Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants
[EN] Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers are amongst the most common markers of choice for studies of diversity and relationships in horticultural species. We have used 11 SSR and 35 SNP markers derived from transcriptome sequencing projects to fingerprint 48 accessions of a collection of brinjal (Solanum melongena), gboma (S. macrocarpon) and scarlet (S. aethiopicum) eggplant complexes, which also include their respective wild relatives S. incanum, S. dasyphyllum and S. anguivi. All SSR and SNP markers were polymorphic and 34 and 36 different genetic fingerprints were obtained with SSRs and SNPs, respectively. When combining both markers all accessions but two had different genetic profiles. Although on average SSRs were more informative than SNPs, with a higher number of alleles, genotypes and polymorphic information content (PIC), and expected heterozygosity (He) values, SNPs have proved highly informative in our materials. Low observed heterozygosity (Ho) and high fixation index (f) values confirm the high degree of homozygosity of eggplants. Genetic identities within groups of each complex were higher than with groups of other complexes, although differences in the ranks of genetic identity values among groups were observed between SSR and SNP markers. For low and intermediate values of pair-wise SNP genetic distances, a moderate correlation between SSR and SNP genetic distances was observed (r(2) = 0.592), but for high SNP genetic distances the correlation was low (r(2) = 0.080). The differences among markers resulted in different phenogram topologies, with a different eggplant complex being basal (gboma eggplant for SSRs and brinjal eggplant for SNPs) to the two others. Overall the results reveal that both types of markers are complementary for eggplant fingerprinting and that interpretation of relationships among groups may be greatly affected by the type of marker used.This work has been funded by European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (Grant AGL2015-64755-R from MINECO/FEDER). Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral contract (Programa FPI de la UPV-Subprograma 1/2013 call). Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva-Formacion programme (FJCI-2015-24835).Gramazio, P.; Prohens Tomás, J.; Borras, D.; Plazas Ávila, MDLO.; Herraiz García, FJ.; Vilanova Navarro, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica. 213(264):1-18. https://doi.org/10.1007/s10681-017-2057-3S118213264Acquadro A, Barchi L, Gramazio P et al (2017) Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE 12:e0180774. https://doi.org/10.1371/journal.pone.0180774Adeniji O, Kusolwa P, Reuben S (2013) Morphological descriptors and micro satellite diversity among scarlet eggplant groups. Afr Crop Sci J 21(1):37–49Aguoru C, Omoigui L, Olasan J (2015) Molecular characterization of Solanum species (Solanum aethiopicum complex; Solanum macrocarpon and Solanum anguivi) using multiplex RAPD primers. J Plant Stud 4:27–34. https://doi.org/10.5539/jps.v4n1p27Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218Ashrafi H, Hill T, Stoffel K et al (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom 13:1–15. https://doi.org/10.1186/1471-2164-13-571Augustinos AA, Petropoulos C, Karasoulou V et al (2016) Assessing diversity among traditional Greek and foreign eggplant cultivars using molecular markers and morphometrical descriptors. Span J Agric Res 14:e0710. https://doi.org/10.5424/sjar/2016144-9020Avise JC (2012) Molecular markers, natural history and evolution. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-1-4615-2381-9Blanca J, Cañizares J, Roig C et al (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genom 12:104. https://doi.org/10.1186/1471-2164-12-104Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331Bukenya Z, Carasco J (1994) Biosystematic study of Solanum macrocarpon—S. dasyphyllum complex in Uganda and relations with Solanum linnaeanum. East Afr Agric For J 59(3):187–204Castillo A, Budak H, Varshney RK et al (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8:97. https://doi.org/10.1186/1471-2229-8-97Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608. https://doi.org/10.1007/s00122-008-0923-zCoates BS, Sumerford DV, Miller NJ et al (2009) Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564. https://doi.org/10.1093/jhered/esp028D’Agostino N, Golas T, van de Geest H et al (2013) Genomic analysis of the native European Solanum species, S. dulcamara. BMC Genom 14:356. https://doi.org/10.1186/1471-2164-14-356Daunay MC, Hazra P (2012) Eggplant. In: Peter KV, Hazra P (eds) Handbook of Vegetables. Studium Press, Houston, pp 257–322Davey J, Hohenlohe P, Etter P et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. https://doi.org/10.1038/nrg3012De Barba M, Miquel C, Lobréaux S et al (2016) High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol Ecol Resour 17(3):492–507. https://doi.org/10.1111/1755-0998.12594Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. https://doi.org/10.1038/nrg1348Felsenstein, J (2007). PHYLIP (Phylogeny Inference Package) Version 3.67. Department of Genome Sciences, University of Washington, Seattle, WA, USAFernandez-Silva I, Whitney J, Wainwright B (2013) Microsatellites for next-generation ecologists: a post-sequencing bioinformatics pipeline. PLoS ONE 8(2):e55990Filippi CV, Aguirre N, Rivas JG et al (2015) Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol 15:52. https://doi.org/10.1186/s12870-014-0360-xFischer MC, Rellstab C, Leuzinger M et al (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom 18:69. https://doi.org/10.1186/s12864-016-3459-7Furini A, Wunder J (2004) Analysis of eggplant (Solanum melongena)-related germplasm: morphological and AFLP data contribute to phylogenetic interpretations and germplasm utilization. Theor Appl Genet 108:197–208. https://doi.org/10.1007/s00122-003-1439-1Gadaleta A, Giancaspro A, Zacheo S et al (2011) Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet Resour 9:243–246. https://doi.org/10.1017/S147926211100030XGe H, Liu Y, Jiang M et al (2013) Analysis of genetic diversity and structure of eggplant populations (Solanum melongena L.) in China using simple sequence repeat markers. Sci Hortic 162:71–75. https://doi.org/10.1016/j.scienta.2013.08.004Gonzaga ZJ (2015) Evaluation of SSR and SNP Markers for Molecular Breeding in Rice. Plant Breed Biotechnol 3:139–152. https://doi.org/10.9787/PBB.2015.3.2.139Goodwin S, McPherson J, McCombie W (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351Gramazio P, Blanca J, Ziarsolo P et al (2016) Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genom 17:300. https://doi.org/10.1186/s12864-016-2631-4Grover A, Sharma PC (2014) Development and use of molecular markers: past and present. Crit Rev Biotechnol 8551:1–13. https://doi.org/10.3109/07388551.2014.959891Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE 2:e1367. https://doi.org/10.1371/journal.pone.0001367Hess JE, Matala AP (2011) Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin. Mol Ecol Resour. https://doi.org/10.1111/j.1755-0998.2010.02958.xHighton R (1993) The relationship between the number of loci and the statistical support for the topology of UPGMA trees obtained from genetic distance data. Mol Phylogenet Evol 2:337–343Hirakawa H, Shirasawa K, Miyatake K, Nunome, T et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21:649–660. https://doi.org/10.1093/dnares/dsu027Hong CP, Piao ZY, Kang TW et al (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356.Hu J, Wang L, Li J (2011) Comparison of genomic SSR and EST-SSR markers for estimating genetic diversity in cucumber. Biol Plant 55:577–580. https://doi.org/10.1007/s10535-011-0129-0Isshiki S, Iwata N, Khan MMR (2008) ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Sci Hortic 117:186–190. https://doi.org/10.1016/j.scienta.2008.04.003Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371. https://doi.org/10.1007/s00122-007-0570-9Kalia RK, Rai MK, Kalia S et al (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259. https://doi.org/10.1016/j.tig.2006.03.005Kaushik P, Prohens J, Vilanova S et al (2016) Phenotyping of eggplant wild relatives and interspecific hybrids with conventional and phenomics descriptors provides insight for their potential utilization in breeding. Front Plant Sci 7:677Kim C, Guo H, Kong W et al (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22Knapp S, Vorontsova MS, Prohens J (2013) Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS ONE 8:e57039Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778. https://doi.org/10.1073/pnas.95.18.10774Lester RN, Daunay MC (2003) Diversity of African vegetable Solanum species and its implications for a better understanding of plant domestication. Schriften zu Genetischen Ressourcen 22:137–152Lester RN, Niakan L (1986) Origin and domestication of the scarlet eggplant, Solanum aethiopicum, from S. anguivi in Africa. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 433–456Lester RN, Jaeger PML, Bleijendaal-Spierings BHM et al (1990) African eggplants-a review of collecting in West Africa. Plant Genet Resour Newsl 81:17–26Levin R, Myers N, Bohs L (2006) Phylogenetic relationships among the ‘spiny solanums’ (Solanum subgenus Leptostemonum, Solanaceae). Am J Bot 93(1):157–169Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239Li YC, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465Liu K, Muse S (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220. https://doi.org/10.1038/214637b0Martínez-Arias R, Calafell F, Mateu E et al (2001) Sequence variability of a human pseudogene. Genome Res 11:1071–1085. https://doi.org/10.1101/gr.167701Meyer RS, Karol KG, Little DP et al (2012) Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogenet Evol 63:685–701. https://doi.org/10.1016/j.ympev.2012.02.006Muñoz-Falcón J, Prohens J, Vilanova S, Nuez F (2009) Diversity in commercial varieties and landraces of black eggplants and implications for broadening the breeders’ gene pool. Ann Appl Biol 154(3):453–465Nandha PS, Singh J (2014) Comparative assessment of genetic diversity between wild and cultivated barley using gSSR and EST-SSR markers. Plant Breed 133:28–35. https://doi.org/10.1111/pbr.12118Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. https://doi.org/10.1086/282771Nunome T, Negoro S, Kono I et al (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153. https://doi.org/10.1007/s00122-009-1116-0Page R (2001) TreeView. Glasgow University, GlasgowPeakall P, Smouse R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 28:2537–2539Pessarakli M, Dris R (2004) Pollination and breeding of eggplants. J Food Agric Environ 2:218–219Plazas M, Andújar I, Vilanova S et al (2014) Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front. Plant Sci 5:318Ranil R, Niran H, Plazas M et al (2015) Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Sci Hortic 193:174–181. https://doi.org/10.1016/j.scienta.2015.07.030Sakata Y, Lester RN (1997) Chloroplast DNA diversity in brinjal eggplant (Solanum melongena L.) and related species. Euphytica 97:295–301. https://doi.org/10.1023/A:1003000612441Sakata Y, Nishio T, Matthews PJ (1991) Chloroplast DNA analysis of eggplant (Solanum melongena) and related species for their taxonomic affinity. Euphytica 55:21–26Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214. https://doi.org/10.1186/1471-2148-13-214Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161Sneath P, Sokal R (1973) Numerical taxonomy. The principles and practice of numerical classification. W H Freeman Limited, San FranciscoStàgel A, Portis E, Toppino L et al (2008) Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genom 9:357. https://doi.org/10.1186/1471-2164-9-357Sunseri F, Polignano GB, Alba V et al (2010) Genetic diversity and characterization of African eggplant germplasm collection. Afr J Plant Sci 4:231–241Syfert MM, Castañeda-Álvarez NP, Khoury CK et al (2016) Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in genebanks and many species at risk of extinction. Am J Bot 103:635–651. https://doi.org/10.3732/ajb.1500539Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422. https://doi.org/10.1007/s00122-002-1031-0Thomson MJ, Alfred J, Dangl J et al (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212. https://doi.org/10.9787/PBB.2014.2.3.195Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017Tumbilen Y, Frary A, Daunay MC, Doganlar S (2011) Application of EST-SSRs to examine genetic diversity in eggplant and its close relatives. Turk J Biol 35:125–136. https://doi.org/10.3906/biy-0906-57van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299. https://doi.org/10.1007/s00122-009-1256-2Van Tassell CP, Smith TPL, Matukumalli LK et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252. https://doi.org/10.1038/nmeth.1185Varshney R, Graner A, Sorrells M (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55Varshney RK, Chabane K, Hendre PS et al (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649. https://doi.org/10.1016/j.plantsci.2007.08.010Vilanova S, Manzur JP, Prohens J (2012) Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Mol Breed 30:647–660. https://doi.org/10.1007/s11032-011-9650-2Vilanova S, Hurtado M, Cardona A (2014) Genetic diversity and relationships in local varieties of eggplant from different cultivar groups as assessed by genomic SSR markers. Not Bot Horti Agrobo Cluj-Napoca 42:59–65Vogel JP, Gu YQ, Twigg P et al (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 113:186–195. https://doi.org/10.1007/s00122-006-0285-3Vorontsova MS, Stern S, Bohs L, Knapp S (2013) African spiny solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc 173:176–193. https://doi.org/10.1111/boj.12053Weese TL, Bohs L (2010) Eggplant origins: out of Africa, into the Orient. Taxon 59:49–56. https://doi.org/10.2307/27757050Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420. https://doi.org/10.2307/2406450Xiao M, Zhang Y, Chen X et al (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134. https://doi.org/10.1016/j.jbiotec.2013.04.004Yan J, Yang X, Shah T et al (2010) High-throughput SNP genotyping with the Goldengate assay in maize. Mol Breed 25:441–451. https://doi.org/10.1007/s11032-009-9343-2Yang X, Xu Y, Shah T et al (2011) Comparison of SSRs and SNPs in assessment of genetic relatedness in maize. Genetica 139:1045–1054. https://doi.org/10.1007/s10709-011-9606-9Yu J, Zhang Z, Zhu C et al (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63. https://doi.org/10.3835/plantgenome2008.09.0009Zhan L, Paterson I, Fraser B (2016) MEGASAT: automated inference of microsatellite genotypes from sequence data. Ecol Resour, Mol. https://doi.org/10.1111/1755-0998.1256
- …