59 research outputs found

    Current opinion on the role of testosterone in the development of prostate cancer: a dynamic model

    Get PDF
    Background: Since the landmark study conducted by Huggins and Hodges in 1941, a failure to distinguish between the role of testosterone in prostate cancer development and progression has led to the prevailing opinion that high levels of testosterone increase the risk of prostate cancer. To date, this claim remains unproven. Presentation of the Hypothesis: We present a novel dynamic mode of the relationship between testosterone and prostate cancer by hypothesizing that the magnitude of age-related declines in testosterone, rather than a static level of testosterone measured at a single point, may trigger and promote the development of prostate cancer. Testing of the Hypothesis: Although not easily testable currently, prospective cohort studies with population-representative samples and repeated measurements of testosterone or retrospective cohorts with stored blood samples from different ages are warranted in future to test the hypothesis. Implications of the Hypothesis: Our dynamic model can satisfactorily explain the observed age patterns of prostate cancer incidence, the apparent conflicts in epidemiological findings on testosterone and risk of prostate cancer, racial disparities in prostate cancer incidence, risk factors associated with prostate cancer, and the role of testosterone in prostate cancer progression. Our dynamic model may also have implications for testosterone replacement therapy

    The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    Get PDF
    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use

    A novel translational assay of response inhibition and impulsivity: effects of prefrontal cortex lesions, drugs used in ADHD, and serotonin 2C receptor antagonism

    Get PDF
    Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analogue of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviours. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory ‘stop-signal’ during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, whilst the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modelled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using the model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    American Neurotology Society, American Otological Society, and American Academy of Otolaryngology - Head and Neck Foundation Guide to Enhance Otologic and Neurotologic Care During the COVID-19 Pandemic.

    No full text
    This combined American Neurotology Society, American Otological Society, and American Academy of Otolaryngology \u2013 Head and Neck Surgery Foundation document aims to provide guidance during the coronavirus disease of 2019 (COVID-19) on 1) \u2018\u2018priority\u2019\u2019 of care for otologic and neurotologic patients in the office and operating room, and 2) optimal utilization of personal protective equipment. Given the paucity of evidence to inform otologic and neurotologic best practices during COVID-19, the recommendations herein are based on relevant peer-reviewed articles, the Centers for Disease Control and Prevention COVID-19 guidelines, United States and international hospital policies, and expert opinion. The suggestions presented here are not meant to be definitive, and best practices will undoubtedly change with increasing knowledge and quality data related to COVID-19. Interpretation of this guidance document is dependent on local factors including prevalence of COVID-19 in the surgeons\u2019 local community. This is not intended to set a standard of care, and should not supersede the clinician\u2019s best judgement when managing specific clinical concerns and/or regional conditions. Access to otologic and neurotologic care during and after the COVID-19 pandemic is dependent upon adequate protection of physicians, audiologists, and ancillary support staff. Otolaryngologists and associated staff are at high risk for COVID-19 disease transmission based on close contact with mucosal surfaces of the upper aerodigestive tract during diagnostic evaluation and therapeutic procedures. While many otologic and neurotologic conditions are not imminently life threatening, they have a major impact on communication, daily functioning, and quality of life. In addition, progression of disease and delay in treatment can result in cranial nerve deficits, intracranial and life-threatening complications, and/or irreversible consequences. In this regard, many otologic and neurotologic conditions should rightfully be considered \u2018\u2018urgent,\u2019\u2019 and almost all require timely attention to permit optimal outcomes. It is reasonable to proceed with otologic and neurotologic clinic visits and operative cases based on input from expert opinion of otologic care providers, clinic/hospital administration, infection prevention and control specialists, and local and state public health leaders. Significant regional variations in COVID-19 prevalence exist; therefore, physicians working with local municipalities are best suited to make determinations on the appropriateness and timing of otologic and neurotologic care
    corecore