5 research outputs found
A single-electron transistor made from a cadmium selenide nanocrystal
The techniques of colloidal chemistry permit the routine creation of
semiconductor nanocrystals, whose dimensions are much smaller than those that
can be realized using lithographic techniques. The sizes of such nanocrystals
can be varied systematically to study quantum size effects or to make novel
electronic or optical materials with tailored properties. Preliminary studies
of both the electrical and optical properties of individual nanocrystals have
been performed recently. These studies show clearly that a single excess charge
on a nanocrystal can markedly influence its properties. Here we present
measurements of electrical transport in a single-electron transistor made from
a colloidal nanocrystal of cadmium selenide. This device structure enables the
number of charge carriers on the nanocrystal to be tuned directly, and so
permits the measurement of the energy required for adding successive charge
carriers. Such measurements are invaluable in understanding the energy-level
spectra of small electronic systems, as has been shown by similar studies of
lithographically patterned quantum dots and small metallic grains.Comment: 3 pages, PDF forma