282 research outputs found

    Transcriptional profiling of eosinophil subsets in interleukin-5 transgenic mice

    Get PDF
    Eosinophils are important in fighting parasitic infections and are implicated in the pathogenesis of asthma and allergy. IL-5 is a critical regulator of eosinophil development, controlling proliferation, differentiation, and maturation of the lineage. Mice that constitutively express IL-5 have in excess of 10-fold more eosinophils in the hematopoietic organs than their wild type (WT) counterparts. We have identified that much of this expansion is in a population of Siglec-F high eosinophils, which are rare in WT mice. In this study, we assessed transcription in myeloid progenitors, eosinophil precursors, and Siglec-F medium and Siglec-F high eosinophils from IL-5 transgenic mice and in doing so have created a useful resource for eosinophil biologists. We have then utilized these populations to construct an eosinophil trajectory based on gene expression and to identify gene sets that are associated with eosinophil lineage progression. Cell cycle genes were significantly associated with the trajectory, and we experimentally demonstrate an increasing trend toward quiescence along the trajectory. Additionally, we found gene expression changes associated with constitutive IL-5 signaling in eosinophil progenitors, many of which were not observed in eosinophils

    Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor

    Get PDF
    Purpose: Panobinostat is partly metabolized by CYP3A4 in vitro. This study evaluated the effect of a potent CYP3A inhibitor, ketoconazole, on the pharmacokinetics and safety of panobinostat. Methods: Patients received a single panobinostat oral dose on day 1, followed by 4 days wash-out period. On days 5-9, ketoconazole was administered. On day 8, a single panobinostat dose was co-administered with ketoconazole. Panobinostat was administered as single agent three times a week on day 15 and onward. Results: In the presence of ketoconazole, there was 1.6- and 1.8-fold increase in Cmaxand AUC of panobinostat, respectively. No substantial change in Tmaxor half-life was observed. No difference in panobinostat-pharmacokinetics between patients carrying CYP3A5*1/*3 and CYP3A5*3/*3 alleles was observed. Most frequently reported adverse events were gastrointestinal related. Patients had asymptomatic hypophosphatemia (64%), and urine analysis suggested renal phosphate wasting. Conclusions: Co-administration of panobinostat with CYP3A inhibitors is feasible as the observed increase in panobinostat PK parameters was not considered clinically relevant. Considering the variability in exposure following enzyme inhibition and the fact that chronic dosing of panobinostat was not studied with CYP3A inhibitors, close monitoring of panobinostat-related adverse events is necessary

    Identification of a Siglec-F+ granulocyte-macrophage progenitor

    Get PDF
    In recent years multi-parameter flow cytometry has enabled identification of cells at major stages in myeloid development; from pluripotent hematopoietic stem cells, through populations with increasingly limited developmental potential (common myeloid progenitors and granulocyte-macrophage progenitors), to terminally differentiated mature cells. Myeloid progenitors are heterogeneous, and the surface markers that define transition states from progenitors to mature cells are poorly characterized. Siglec-F is a surface glycoprotein frequently used in combination with IL-5 receptor alpha (IL5Rα) for the identification of murine eosinophils. Here, we describe a CD11b+ Siglec-F+ IL5Rα- myeloid population in the bone marrow of C57BL/6 mice. The CD11b+ Siglec-F+ IL5Rα- cells are retained in eosinophil deficient PHIL mice, and are not expanded upon overexpression of IL-5, indicating that they are upstream or independent of the eosinophil lineage. We show these cells to have GMP-like developmental potential in vitro and in vivo, and to be transcriptionally distinct from the classically described GMP population. The CD11b+ Siglec-F+ IL5Rα- population expands in the bone marrow of Myb mutant mice, which is potentially due to negative transcriptional regulation of Siglec-F by Myb. Lastly, we show that the role of Siglec-F may be, at least in part, to regulate GMP viability

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    A Novel Histone Deacetylase Inhibitor Exhibits Antitumor Activity via Apoptosis Induction, F-Actin Disruption and Gene Acetylation in Lung Cancer

    Get PDF
    BACKGROUND: Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a chemotherapeutic drug for NSCLC. METHODOLOGY/PRINCIPAL FINDINGS: The cytotoxicity effect of OSU-HDAC-44 was examined in three human NSCLC cell lines including A549 (p53 wild-type), H1299 (p53 null), and CL1-1 (p53 mutant). The antiproliferative mechanisms of OSU-HDAC-44 were investigated by flow cytometric cell cycle analysis, apoptosis assays and genome-wide chromatin-immunoprecipitation-on-chip (ChIP-on-chip) analysis. Mice with established A549 tumor xenograft were treated with OSU-HDAC-44 or vehicle control and were used to evaluate effects on tumor growth, cytokinesis inhibition and apoptosis. OSU-HDAC-44 was a pan-HDAC inhibitor and exhibits 3-4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA) in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, cytokinesis was inhibited and subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. ChIP-on-chip analysis revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549 xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo. CONCLUSIONS/SIGNIFICANCE: OSU-HDAC-44 significantly suppresses tumor growth via induction of cytokinesis defect and intrinsic apoptosis in preclinical models of NSCLC. Our data provide compelling evidence that OSU-HDAC-44 is a potent HDAC targeted inhibitor and can be tested for NSCLC chemotherapy

    "Shock and kill" effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence

    Get PDF
    Latently infected, resting memory CD4+ T cells and macrophages represent a major obstacle to the eradication of HIV-1. For this purpose, "shock and kill" strategies have been proposed (activation of HIV-1 followed by stimuli leading to cell death). Histone deacetylase inhibitors (HDACIs) induce HIV-1 activation from quiescence, yet class/isoform-selective HDACIs are needed to specifically target HIV-1 latency. We tested 32 small molecule HDACIs for their ability to induce HIV-1 activation in the ACH-2 and U1 cell line models. In general, potent activators of HIV-1 replication were found among non-class selective and class I-selective HDACIs. However, class I selectivity did not reduce the toxicity of most of the molecules for uninfected cells, which is a major concern for possible HDACI-based therapies. To overcome this problem, complementary strategies using lower HDACI concentrations have been explored. We added to class I HDACIs the glutathione-synthesis inhibitor buthionine sulfoximine (BSO), in an attempt to create an intracellular environment that would facilitate HIV-1 activation. The basis for this strategy was that HIV-1 replication decreases the intracellular levels of reduced glutathione, creating a pro-oxidant environment which in turn stimulates HIV-1 transcription. We found that BSO increased the ability of class I HDACIs to activate HIV-1. This interaction allowed the use of both types of drugs at concentrations that were non-toxic for uninfected cells, whereas the infected cell cultures succumbed more readily to the drug combination. These effects were associated with BSO-induced recruitment of HDACI-insensitive cells into the responding cell population, as shown in Jurkat cell models for HIV-1 quiescence. The results of the present study may contribute to the future design of class I HDACIs for treating HIV-1. Moreover, the combined effects of class I-selective HDACIs and the glutathione synthesis inhibitor BSO suggest the existence of an Achilles' heel that could be manipulated in order to facilitate the "kill" phase of experimental HIV-1 eradication strategies

    Histone deacetylase inhibitors in Hodgkin lymphoma

    Get PDF
    Although Hodgkin lymphoma (HL) is considered one of the most curable human cancers, the treatment of patients with relapsed and refractory disease, especially those who relapse after autologous stem cell transplantation, remains challenging. Furthermore, because of the young age of these patients, the impact of early mortality on the number of years lost from productive life is remarkable. Patients with relapsed HL post stem cell transplantation currently have no curative therapy, and are in need for new drugs and novel treatment strategies. While no new drugs have been approved for the treatment of patients with HL in more than three decades, several new agents are demonstrating promising results in early clinical trials. This review will focus on the emerging role of histone deacetylase inhibitors in patients with relapsed HL

    Synergistic Antitumor Effects of Novel HDAC Inhibitors and Paclitaxel In Vitro and In Vivo

    Get PDF
    Preclinical studies support the therapeutic potential of histone deacetylases inhibitors (HDACi) in combination with taxanes. The efficacy of combination has been mainly ascribed to a cooperative effect on microtubule stabilization following tubulin acetylation. In the present study we investigated the effect of paclitaxel in combination with two novel HDACi, ST2782 or ST3595, able to induce p53 and tubulin hyperacetylation. A synergistic effect of the paclitaxel/ST2782 (or ST3595) combination was found in wild-type p53 ovarian carcinoma cells, but not in a p53 mutant subline, in spite of a marked tubulin acetylation. Such a synergistic interaction was confirmed in additional human solid tumor cell lines harboring wild-type p53 but not in those expressing mutant or null p53. In addition, a synergistic cytotoxic effect was found when ST2782 was combined with the depolymerising agent vinorelbine. In contrast to SAHA, which was substantially less effective in sensitizing cells to paclitaxel-induced apoptosis, ST2782 prevented up-regulation of p21WAF1/Cip1 by paclitaxel, which has a protective role in response to taxanes, and caused p53 down-regulation, acetylation and mitochondrial localization of acetylated p53. The synergistic antitumor effects of the paclitaxel/ST3595 combination were confirmed in two tumor xenograft models. Our results support the relevance of p53 modulation as a major determinant of the synergistic interaction observed between paclitaxel and novel HDACi and emphasize the therapeutic interest of this combination
    corecore