24 research outputs found

    <i>p53</i> mutations in tumours derived from irradiated human thyroid epithelial cells

    No full text
    A non-tumorigenic human thyroid epithelial cell line (HTori-3) has been transformed into tumorigenic cells by exposure in vitro to alpha particles or gamma-radiation. These transformants were tumorigenic in athymic nude mice and tumors were transplantable into other nude mice. To further characterize processes involved in neoplastic progression, the tumor cell lines derived from these radiation-induced primary tumors were screened for mutations in the p53 tumor suppressor gene. p53 mutation was detected by single-strand conformation polymorphism (SSCP) analysis of exons 5 to 8 inclusive. Mutations detected by SSCP analysis were confirmed by sequencing. Mutations were detected in all four exons analysed, although there was no correlation between dose, LET or mutation position or frequency. Mutations in p53 exons 6 and 7 have been reported in the childhood papillary thyroid carcinomas in Belarus presumably as a result of radioiodine fall-out. Similarly here, p53 mutations are induced experimentally during the development of human thyroid tumors generated by irradiation of a human thyroid epithelial cell line in vitro, (C) 1999 Elsevier Science B.V. All rights reserved.</p

    Non-coding RNA production by RNA polymerase III is implicated in cancer

    No full text
    RNA polymerase III (Pol III) makes a variety of small non-coding RNAs, such as tRNA and 5S ribosomal RNA. Increased expression of pol III products is often observed in transformed cells. Much progress has been made in determining how Pol III-dependent transcription is regulated and how it increases in cancers, but the importance of this increase has not been clearly established. New evidence suggests that Pol III output can substantially affect transformation

    DNA sequence and expression of the B95-8 Epstein - Barr virus genome

    No full text
    The complete (172,282 base pairs) nucleotide sequence of the B95-8 strain of Epstein-Barr virus has been established using the dideoxynucleotide/M13 sequencing procedure. Many RNA polymerase II promoters have been mapped and the mRNAs from these promoters have been assigned to the latent or early/late productive virus cycles. Likely protein-coding regions have been identified and three of these have been shown to encode a ribonucleotide reductase, a DNA polymerase and two surface glycoproteins. © 1984 Nature Publishing Group
    corecore