17,157 research outputs found

    The impact of focused training on abnormality detection and provision of accurate preliminary clinical evaluation in newly qualified radiographers

    Get PDF
    Introduction: Preliminary clinical evaluation (PCE) can be a useful initial assessment of traumatic abnormalities by frontline radiographers; new graduates are expected to have the skills and knowledge required to provide this initial interpretation. This study evaluates the abnormality detection performance and accuracy of PCE commenting in newly qualified radiographers. Method: Four newly qualified radiographers completed a fracture/dislocation detection task consisting of 58 cases, including providing a PCE for each suspicious area. Following this, an 8-week training program was completed to improve competence in recognizing abnormalities and providing an accurate PCE. Equally weighted jackknife alternative free-response receiver operating characteristic (wJAFROC) analysis was performed; a difference between pre- and post-training would be considered significant at a test alpha of less than 0.05. Results: Fracture/dislocation detection was significantly better in the post-training evaluation for fixed observers and random cases (F (1,57) = 4.48, p = 0.0387). The reader averaged wJAFROC FOM and 95% CIs for pre- and post-training were 0.619 (0.516, 0.737) and 0.703 (0.622, 0.852). A paired t-test demonstrated a significant difference in PCE scores in favour of the post-training evaluation p = 0.0006. This small cohort demonstrated difficulty in recognising undisplaced fractures and buckle fractures. Conclusion: An 8-week training program had a positive impact on participants’ ability to localise and accurately describe fractures. Implementation of abnormality detection training should be considered during preceptorship periods. Due to the small sample size, it is inappropriate to suggest these findings are representative of all graduate radiographers

    Who Watches the Watchmen? An Appraisal of Benchmarks for Multiple Sequence Alignment

    Get PDF
    Multiple sequence alignment (MSA) is a fundamental and ubiquitous technique in bioinformatics used to infer related residues among biological sequences. Thus alignment accuracy is crucial to a vast range of analyses, often in ways difficult to assess in those analyses. To compare the performance of different aligners and help detect systematic errors in alignments, a number of benchmarking strategies have been pursued. Here we present an overview of the main strategies--based on simulation, consistency, protein structure, and phylogeny--and discuss their different advantages and associated risks. We outline a set of desirable characteristics for effective benchmarking, and evaluate each strategy in light of them. We conclude that there is currently no universally applicable means of benchmarking MSA, and that developers and users of alignment tools should base their choice of benchmark depending on the context of application--with a keen awareness of the assumptions underlying each benchmarking strategy.Comment: Revie

    Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique

    Get PDF
    BACKGROUND: Control of malaria by the release of genetically modified mosquitoes refractory to transmission is now becoming a possibility. In many areas of Africa, Anopheles gambiae is found together with an equally important vector, An. funestus. Given their sympatry and the likelihood of a similar mating period some aspects of the mating behaviour of An. gambiae s.l. and An. funestus are likely to differ. We therefore attempted to characterise the swarming behaviour of An. funestus and to determine if any aspects of the observed behaviour differed from that recorded for the M form of An. gambiae from São Tomé. METHODS: In March – May 2002 the swarming, mating, house exiting and resting behaviour of Anopheles funestus was studied by direct observation in Mozambique. Swarming males and insects in copula were collected by sweep net. Wing lengths of males collected resting, exiting houses, swarming and mating were measured and the wingbeat frequency distribution of individual insects, in free flight confined inside netting covered paper cups, was also determined. RESULTS: Mono-specific swarms occurred at sunset in relatively open areas close to houses used for resting. Mating pairs were seen 11 ± 3.7 min after the start of swarming. The number of total pairs observed being inversely proportional to the time difference between the start of swarming and the first pairing. The great majority of females mated before feeding. Male or female size did not appear to affect mating success or other behaviours. During the study, ambient temperatures decreased and female, but not male, wing size increased. At 516 Hz, the flight tone of female An. funestus was similar to the 497 Hz of the local An. gambiae. Males dispersed if light or dark artificial horizontal markers were placed underneath naturally occurring swarms. CONCLUSION: Differential response to markers would be sufficient for swarming in An. funestus and An. gambiae s.l. to occur in distinct sites

    Altered functional and structural brain network organization in autism.

    Get PDF
    Structural and functional underconnectivity have been reported for multiple brain regions, functional systems, and white matter tracts in individuals with autism spectrum disorders (ASD). Although recent developments in complex network analysis have established that the brain is a modular network exhibiting small-world properties, network level organization has not been carefully examined in ASD. Here we used resting-state functional MRI (n = 42 ASD, n = 37 typically developing; TD) to show that children and adolescents with ASD display reduced short and long-range connectivity within functional systems (i.e., reduced functional integration) and stronger connectivity between functional systems (i.e., reduced functional segregation), particularly in default and higher-order visual regions. Using graph theoretical methods, we show that pairwise group differences in functional connectivity are reflected in network level reductions in modularity and clustering (local efficiency), but shorter characteristic path lengths (higher global efficiency). Structural networks, generated from diffusion tensor MRI derived fiber tracts (n = 51 ASD, n = 43 TD), displayed lower levels of white matter integrity yet higher numbers of fibers. TD and ASD individuals exhibited similar levels of correlation between raw measures of structural and functional connectivity (n = 35 ASD, n = 35 TD). However, a principal component analysis combining structural and functional network properties revealed that the balance of local and global efficiency between structural and functional networks was reduced in ASD, positively correlated with age, and inversely correlated with ASD symptom severity. Overall, our findings suggest that modeling the brain as a complex network will be highly informative in unraveling the biological basis of ASD and other neuropsychiatric disorders

    State of the art: refinement of multiple sequence alignments

    Get PDF
    BACKGROUND: Accurate multiple sequence alignments of proteins are very important in computational biology today. Despite the numerous efforts made in this field, all alignment strategies have certain shortcomings resulting in alignments that are not always correct. Refinement of existing alignment can prove to be an intelligent choice considering the increasing importance of high quality alignments in large scale high-throughput analysis. RESULTS: We provide an extensive comparison of the performance of the alignment refinement algorithms. The accuracy and efficiency of the refinement programs are compared using the 3D structure-based alignments in the BAliBASE benchmark database as well as manually curated high quality alignments from Conserved Domain Database (CDD). CONCLUSION: Comparison of performance for refined alignments revealed that despite the absence of dramatic improvements, our refinement method, REFINER, which uses conserved regions as constraints performs better in improving the alignments generated by different alignment algorithms. In most cases REFINER produces a higher-scoring, modestly improved alignment that does not deteriorate the well-conserved regions of the original alignment

    Visual function assessment in medical imaging research

    Get PDF
    Background: Medical image perception research relies on visual data to study the diagnostic relationship between observers and medical images. A consistent method to assess visual function for participants in medical imaging research has not been developed and represents a significant gap in existing research. Methods: Three visual assessment factors appropriate to observer studies were identified: visual acuity, contrast sensitivity, and stereopsis. A test was designed for each, and 30 radiography observers (mean age 31.6 years) participated in each test. Results: Mean binocular visual acuity for distance was 20/14 for all observers. The difference between observers who did and did not use corrective lenses was not statistically significant (P ! .12). All subjects had a normal value for near visual acuity and stereoacuity. Contrast sensitivity was better than population norms. Conclusion: All observers had normal visual function and could participate in medical imaging visual analysis studies. Protocols of evaluation and populations norms are provided. Further studies are necessary to understand fully the relationship between visual performance on tests and diagnostic accuracy in practice

    A method to determine the impact of reduced visual function on nodule detection performance

    Get PDF
    Purpose: In this study we aim to validate a method to assess the impact of reduced visual function and observer performance concurrently with a nodule detection task. Materials and methods: Three consultant radiologists completed a nodule detection task under three conditions: without visual defocus (0.00 Dioptres; D), and with two different magnitudes of visual defocus ( 1.00 D and 2.00 D). Defocus was applied with lenses and visual function was assessed prior to each image evaluation. Observers evaluated the same cases on each occasion; this comprised of 50 abnormal cases containing 1e4 simulated nodules (5, 8, 10 and 12 mm spherical diameter, 100 HU) placed within a phantom, and 25 normal cases (images containing no nodules). Data was collected under the free-response paradigm and analysed using Rjafroc. A difference in nodule detection performance would be considered significant at p < 0.05. Results: All observers had acceptable visual function prior to beginning the nodule detection task. Visual acuity was reduced to an unacceptable level for two observers when defocussed to 1.00 D and for one observer when defocussed to 2.00 D. Stereoacuity was unacceptable for one observer when defocussed to 2.00 D. Despite unsatisfactory visual function in the presence of defocus we were unable to find a statistically significant difference in nodule detection performance (F(2,4) 1⁄4 3.55, p 1⁄4 0.130). Conclusion: A method to assess visual function and observer performance is proposed. In this pilot evaluation we were unable to detect any difference in nodule detection performance when using lenses to reduce visual function

    Two cases of food aversion with semantic dementia

    Get PDF
    Accounts of altered eating behavior in semantic dementia generally emphasize gluttony and abnormal food preferences. Here we describe two female patients with no past history of eating disorders who developed early prominent aversion to food in the context of an otherwise typical semantic dementia syndrome. One patient (aged 57) presented features in line with anorexia nervosa while the second patient (aged 58) presented with a syndrome more suggestive of bulimia nervosa. These cases add to the growing spectrum of apparently dichotomous behavior patterns in the frontotemporal dementias and illustrate a potentially under-recognized cause of eating disorders presenting in later life

    A JAFROC study of nodule detection performance in CT images of a thorax acquired during PET/CT

    Get PDF
    Purpose Two types of CT images (modalities) are acquired in PET/CT: for attenuation correction (AC) and diagnosis. The purpose of the study was to compare nodule detection and localization performance between these two modalities. Methods CT images, using both modalities, of an anthropomorphic chest phantom containing zero or more simulated spherical nodules of 5, 8, 10 and 12 mm diameters and contrasts −800, −630 and 100 HU were acquired. An observer performance study using nine observers interpreting 45 normal (zero nodules) images and 47 abnormal images (1–3 nodules; average 1.26) was conducted using the free-response receiver operating characteristic (FROC) paradigm. Data were analysed using an R software package implemented jackknife alternative FROC (JAFROC) analysis. Both empirical areas under the equally weighted AFROC curve (wAFROC) and under the highest rating inferred ROC (HR-ROC) curve were used as figures of merit (FOM). To control the probability of Type I error test alpha was set at 0.05. Results Nodule detection as measured by either FOM was significantly better on the diagnostic quality images (2nd modality), irrespective of the method of analysis, [reader averaged inter-modality wAFROC FOM difference = −0.07 (−0.11,−0.04); reader averaged inter-modality HR-ROC FOM difference = −0.05 (−0.09, −0.01)]. Conclusion Nodule detection was statistically worse on images acquired for AC; suggesting that images acquired for AC should not be used to evaluate pulmonary pathology. Keywords PET/CT; Nodule detection; JAFRO
    corecore