17 research outputs found

    Impact of inhaled corticosteroids on growth in children with asthma: systematic review and meta-analysis

    Get PDF
    Background: Long-term inhaled corticosteroids (ICS) may reduce growth velocity and final height of children with asthma. We aimed to evaluate the association between ICS use of >12 months and growth. Methods: We initially searched MEDLINE and EMBASE in July 2013, followed by a PubMed search updated to December 2014. We selected RCTs and controlled observational studies of ICS use in patients with asthma. We conducted random effects meta-analysis of mean differences in growth velocity (cm/year) or final height (cm) between groups. Heterogeneity was assessed using the I2 statistic. Results: We found 23 relevant studies (twenty RCTs and three observational studies) after screening 1882 hits. Meta-analysis of 16 RCTs showed that ICS use significantly reduced growth velocity at one year follow-up (mean difference -0.48 cm/year (95% CI -0.66 to -0.29)). There was evidence of a dose-response effect in three RCTs. Final adult height showed a mean reduction of -1.20 cm (95% CI -1.90 cm to -0.50 cm) with budesonide versus placebo in a high quality RCT. Meta-analysis of two lower quality observational studies revealed uncertainty in the association between ICS use and final adult height, pooled mean difference -0.85 cm (95% CI -3.35 to 1.65). Conclusion: Use of ICS for >12 months in children with asthma has a limited impact on annual growth velocity. In ICS users, there is a slight reduction of about a centimeter in final adult height, which when interpreted in the context of average adult height in England (175 cm for men and 161 cm for women), represents a 0.7% reduction compared to non-ICS users

    Adaption of Seasonal H1N1 Influenza Virus in Mice

    Get PDF
    The experimental infection of a mouse lung with influenza A virus has proven to be an invaluable model for studying the mechanisms of viral adaptation and virulence. The mouse adaption of human influenza A virus can result in mutations in the HA and other proteins, which is associated with increased virulence in mouse lungs. In this study, a mouse-adapted seasonal H1N1 virus was obtained through serial lung-to-lung passages and had significantly increased virulence and pathogenicity in mice. Genetic analysis indicated that the increased virulence of the mouse-adapted virus was attributed to incremental acquisition of three mutations in the HA protein (T89I, N125T, and D221G). However, the mouse adaption of influenza A virus did not change the specificity and affinity of receptor binding and the pH-dependent membrane fusion of HA, as well as the in vitro replication in MDCK cells. Notably, infection with the mouse adapted virus induced severe lymphopenia and modulated cytokine and chemokine responses in mice. Apparently, mouse adaption of human influenza A virus may change the ability to replicate in mouse lungs, which induces strong immune responses and inflammation in mice. Therefore, our findings may provide new insights into understanding the mechanisms underlying the mouse adaption and pathogenicity of highly virulent influenza viruses

    Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis

    Get PDF
    Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75432/1/j.1365-2222.2006.02498.x.pd

    New targets for allergic rhinitis--a disease of civilization

    No full text
    Allergic rhinitis is an inflammatory disorder of the nasal mucosa, mediated by TH2 lymphocytes, which is linked to atopy and whose prevalence is increasing in association with a Western lifestyle. The production of allergen-specific IgE, activation of mucosal mast cells and the recruitment and activation of effector leukocytes provides potential therapeutic targets, including selective inhibition of cytokines, adhesion molecules and signalling pathways. Blockade of IgE, using monoclonal antibodies and vaccine strategies, is a new approach for interrupting the allergic cascade, whereas the use of recombinant mutated allergens, peptides and DNA oligonucleotides will lead to improved efficacy and reduced side effects of immunotherapy to induce tolerance.<br/
    corecore