13 research outputs found

    Amino-Acid Co-Variation in HIV-1 Gag Subtype C: HLA-Mediated Selection Pressure and Compensatory Dynamics

    Get PDF
    Background Despite high potential for HIV-1 genetic variation, the emergence of some mutations is constrained by fitness costs, and may be associated with compensatory amino acid (AA) co-variation. To characterize the interplay between Cytotoxic T Lymphocyte (CTL)-mediated pressure and HIV-1 evolutionary pathways, we investigated AA co-variation in Gag sequences obtained from 449 South African individuals chronically infected with HIV-1 subtype C. Methodology/Principal Findings Individuals with CTL responses biased toward Gag presented lower viral loads than individuals with under-represented Gag-specific CTL responses. Using methods that account for founder effects and HLA linkage disequilibrium, we identified 35 AA sites under Human Leukocyte Antigen (HLA)-restricted CTL selection pressure and 534 AA-to-AA interactions. Analysis of two-dimensional distances between co-varying residues revealed local stabilization mechanisms since 40% of associations involved neighboring residues. Key features of our co-variation analysis included sites with a high number of co-varying partners, such as HLA-associated sites, which had on average 55% more connections than other co-varying sites. Conclusions/Significance Clusters of co-varying AA around HLA-associated sites (especially at typically conserved sites) suggested that cooperative interactions act to preserve the local structural stability and protein function when CTL escape mutations occur. These results expose HLA-imprinted HIV-1 polymorphisms and their interlinked mutational paths in Gag that are likely due to opposite selective pressures from host CTL-mediated responses and viral fitness constraints.Bill & Melinda Gates Foundation (#43437)American Foundation for AIDS Research (#107005-43-RFNT)Center for AIDS Research (CFAR)United States. Public Health Service (AI057005
    corecore