1,415 research outputs found

    Dynamic contrast-enhanced MRI of synovitis in knee osteoarthritis: repeatability, discrimination and sensitivity to change in a prospective experimental study

    Get PDF
    OBJECTIVES: Evaluate test-retest repeatability, ability to discriminate between osteoarthritic and healthy participants, and sensitivity to change over 6 months, of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarkers in knee OA. METHODS: Fourteen individuals aged 40-60 with mild-moderate knee OA and 6 age-matched healthy volunteers (HV) underwent DCE-MRI at 3 T at baseline, 1 month and 6 months. Voxelwise pharmacokinetic modelling of dynamic data was used to calculate DCE-MRI biomarkers including Ktrans and IAUC60. Median DCE-MRI biomarker values were extracted for each participant at each study visit. Synovial segmentation was performed using both manual and semiautomatic methods with calculation of an additional biomarker, the volume of enhancing pannus (VEP). Test-retest repeatability was assessed using intraclass correlation coefficients (ICC). Smallest detectable differences (SDDs) were calculated from test-retest data. Discrimination between OA and HV was assessed via calculation of between-group standardised mean differences (SMD). Responsiveness was assessed via the number of OA participants with changes greater than the SDD at 6 months. RESULTS: Ktrans demonstrated the best test-retest repeatability (Ktrans/IAUC60/VEP ICCs 0.90/0.84/0.40, SDDs as % of OA mean 33/71/76%), discrimination between OA and HV (SMDs 0.94/0.54/0.50) and responsiveness (5/1/1 out of 12 OA participants with 6-month change > SDD) when compared to IAUC60 and VEP. Biomarkers derived from semiautomatic segmentation outperformed those derived from manual segmentation across all domains. CONCLUSIONS: Ktrans demonstrated the best repeatability, discrimination and sensitivity to change suggesting that it is the optimal DCE-MRI biomarker for use in experimental medicine studies. KEY POINTS: • Dynamic contrast-enhanced MRI (DCE-MRI) provides quantitative measures of synovitis in knee osteoarthritis which may permit early assessment of efficacy in experimental medicine studies. • This prospective observational study compared DCE-MRI biomarkers across domains relevant to experimental medicine: test-retest repeatability, discriminative validity and sensitivity to change. • The DCE-MRI biomarker Ktrans demonstrated the best performance across all three domains, suggesting that it is the optimal biomarker for use in future interventional studies

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    Prospects for radical emissions reduction through behaviour and lifestyle change

    Get PDF
    Over the past two decades, scholars and practitioners across the social sciences, in policy and beyond have proposed, trialled and developed a wide range of theoretical and practical approaches designed to bring about changes in behaviours and lifestyles that contribute to climate change. With the exception of the establishment of a small number of iconic behaviours such as recycling, it has however proved extremely difficult to bring about meaningful transformations in personal greenhouse gas emissions at either the individual or societal level, with multiple reviews now pointing to the limited efficacy of current approaches. We argue that the majority of approaches designed to achieve mitigation have been constrained by the need to operate within prevailing social scientific, economic and political orthodoxies which have precluded the possibility of non-marginal change. In this paper we ask what a truly radical approach to reducing personal emissions would look like from social science perspectives which challenge the unstated assumptions severely limiting action to date, and which explore new alternatives for change. We emphasise the difficulties likely to impede the instituting of genuinely radical societal change regarding climate change mitigation, whilst proposing ways that the ground could be prepared for such a transformation to take place

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Scientific discovery as a combinatorial optimisation problem: How best to navigate the landscape of possible experiments?

    Get PDF
    A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a ‘landscape’ representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems ‘hard’, but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the ‘best’ experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Smoke-free legislation and the incidence of paediatric respiratory infections and wheezing/asthma: interrupted time series analyses in the four UK nations

    Get PDF
    We investigated the association between introduction of smoke-free legislation in the UK (March 2006 for Scotland, April 2007 for Wales and Northern Ireland, and July 2007 for England) and the incidence of respiratory diseases among children. We extracted monthly counts of new diagnoses of wheezing/asthma and RTIs among children aged 0–12 years from all general practices in the Clinical Practice Research Datalink during 1997–2012. Interrupted time series analyses were performed using generalised additive mixed models, adjusting for underlying incidence trends, population size changes, seasonal factors, and pandemic influenza, as appropriate. 366,642 new wheezing/asthma diagnoses and 4,324,789 RTIs were observed over 9,536,003 patient-years. There was no statistically significant change in the incidence of wheezing/asthma after introduction of smoke-free legislation in England (incidence rate ratio (IRR) 0.94, 95% CI 0.81–1.09) or any other UK country (Scotland: IRR 0.99, 95% CI 0.83–1.19; Wales: IRR 1.09, 95% CI 0.89–1.35; Northern Ireland: IRR 0.96, 95% CI 0.76–1.22). Similarly no statistically significant changes in RTI incidence were demonstrated (England: IRR 0.95, 95% CI 0.86–1.06; Scotland: IRR 0.96, 95% CI 0.83–1.11; Wales: IRR 0.97, 95% CI 0.86–1.09; Northern Ireland: IRR 0.90, 95% CI 0.79–1.03). There were no demonstrable reductions in the incidence of paediatric wheezing/asthma or RTIs following introduction of smoke-free legislation in the UK

    A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression.

    Get PDF
    BACKGROUND: The analysis of gene expression from time series underpins many biological studies. Two basic forms of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal nature of the data based on a Gaussian process. RESULTS: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing that the proposed approach considerably outperforms the current state of the art. CONCLUSIONS: Gaussian processes offer an attractive trade-off between efficiency and usability for the analysis of microarray time series. The Gaussian process framework offers a natural way of handling biological replicates and missing values and provides confidence intervals along the estimated curves of gene expression. Therefore, we believe Gaussian processes should be a standard tool in the analysis of gene expression time series

    Mapping Groundwater Dependent Ecosystems in California

    Get PDF
    BACKGROUND: Most groundwater conservation and management efforts focus on protecting groundwater for drinking water and for other human uses with little understanding or focus on the ecosystems that depend on groundwater. However, groundwater plays an integral role in sustaining certain types of aquatic, terrestrial and coastal ecosystems, and their associated landscapes. Our aim was to illuminate the connection between groundwater and surface ecosystems by identifying and mapping the distribution of groundwater dependent ecosystems (GDEs) in California. METHODOLOGY/PRINCIPAL FINDINGS: To locate where groundwater flow sustains ecosystems we identified and mapped groundwater dependent ecosystems using a GIS. We developed an index of groundwater dependency by analyzing geospatial data for three ecosystem types that depend on groundwater: (1) springs and seeps; (2) wetlands and associated vegetation alliances; and (3) stream discharge from groundwater sources (baseflow index). Each variable was summarized at the scale of a small watershed (Hydrologic Unit Code-12; mean size = 9,570 ha; n = 4,621), and then stratified and summarized to 10 regions of relative homogeneity in terms of hydrologic, ecologic and climatic conditions. We found that groundwater dependent ecosystems are widely, although unevenly, distributed across California. Although different types of GDEs are clustered more densely in certain areas of the state, watersheds with multiple types of GDEs are found in both humid (e.g. coastal) and more arid regions. Springs are most densely concentrated in the North Coast and North Lahontan, whereas groundwater dependent wetlands and associated vegetation alliances are concentrated in the North and South Lahontan and Sacramento River hydrologic regions. The percentage of land area where stream discharge is most dependent on groundwater is found in the North Coast, Sacramento River and Tulare Lake regions. GDE clusters are located at the highest percentage in the North Coast (an area of the highest annual rainfall totals), North Lahontan (an arid, high desert climate with low annual rainfall), and Sacramento River hydrologic regions. That GDEs occur in such distinct climatic and hydrologic settings reveals the widespread distribution of these ecosystems. CONCLUSIONS/SIGNIFICANCE: Protection and management of groundwater-dependent ecosystems are hindered by lack of information on their diversity, abundance and location. By developing a methodology that uses existing datasets to locate GDEs, this assessment addresses that knowledge gap. We report here on the application of this method across California, but believe the method can be expanded to regions where spatial data exist
    corecore