88 research outputs found

    Preterm Birth in Caucasians Is Associated with Coagulation and Inflammation Pathway Gene Variants

    Get PDF
    Spontaneous preterm birth (<37 weeks gestation—PTB) occurs in ∌12% of pregnancies in the United States, and is the largest contributor to neonatal morbidity and mortality. PTB is a complex disease, potentially induced by several etiologic factors from multiple pathophysiologic pathways. To dissect the genetic risk factors of PTB a large-scale high-throughput candidate gene association study was performed examining 1536 SNP in 130 candidate genes from hypothesized PTB pathways. Maternal and fetal DNA from 370 US Caucasian birth-events (172 cases and 198 controls) was examined. Single locus, haplotype, and multi-locus association analyses were performed separately on maternal and fetal data. For maternal data the strongest associations were found in genes in the complement-coagulation pathway related to decidual hemorrhage in PTB. In this pathway 3 of 6 genes examined had SNPs significantly associated with PTB. These include factor V (FV) that was previously associated with PTB, factor VII (FVII), and tissue plasminogen activator (tPA). The single strongest effect was observed in tPA marker rs879293 with a significant allelic (p = 2.30×10−3) and genotypic association (p = 2.0×10−6) with PTB. The odds ratio (OR) for this SNP was 2.80 [CI 1.77–4.44] for a recessive model. Given that 6 of 8 markers in tPA were statistically significant, sliding window haplotype analyses were performed and revealed an associating 4 marker haplotype in tPA (p = 6.00×10−3). The single strongest effect in fetal DNA was observed in the inflammatory pathway at rs17121510 in the interleukin-10 receptor antagonist (IL-10RA) gene for allele (p = 0.01) and genotype (p = 3.34×10−4). The OR for the IL-10RA genotypic additive model was 1.92 [CI 1.15–3.19] (p = 2.00×10−3). Finally, exploratory multi-locus analyses in the complement and coagulation pathway were performed and revealed a potentially significant interaction between a marker in FV (rs2187952) and FVII (rs3211719) (p<0.001). These results support a role for genes in both the coagulation and inflammation pathways, and potentially different maternal and fetal genetic risks for PTB

    Mucosal Targeting of a BoNT/A Subunit Vaccine Adjuvanted with a Mast Cell Activator Enhances Induction of BoNT/A Neutralizing Antibodies in Rabbits

    Get PDF
    We previously reported that the immunogenicity of HcÎČtre, a botulinum neurotoxin A (BoNT/A) immunogen, was enhanced by fusion to an epithelial cell binding domain, Ad2F, when nasally delivered to mice with cholera toxin (CT). This study was performed to determine if Ad2F would enhance the nasal immunogenicity of HcÎČtre in rabbits, an animal model with a nasal cavity anatomy similar to humans. Since CT is not safe for human use, we also tested the adjuvant activity of compound 48/80 (C48/80), a mast cell activating compound previously determined to safely exhibit nasal adjuvant activity in mice.New Zealand White or Dutch Belted rabbits were nasally immunized with HcÎČtre or HcÎČtre-Ad2F alone or combined with CT or C48/80, and serum samples were tested for the presence of HcÎČtre-specific binding (ELISA) or BoNT/A neutralizing antibodies.HcÎČtre-Ad2F nasally administered with CT induced serum anti-HcÎČtre IgG ELISA and BoNT/A neutralizing antibody titers greater than those induced by HcÎČtre + CT. C48/80 provided significant nasal adjuvant activity and induced BoNT/A-neutralizing antibodies similar to those induced by CT.Ad2F enhanced the nasal immunogenicity of HcÎČtre, and the mast cell activator C48/80 was an effective adjuvant for nasal immunization in rabbits, an animal model with a nasal cavity anatomy similar to that in humans

    Cytoplasmic CUG RNA Foci Are Insufficient to Elicit Key DM1 Features

    Get PDF
    The genetic basis of myotonic dystrophy type I (DM1) is the expansion of a CTG tract located in the 3â€Č untranslated region of DMPK. Expression of mutant RNAs encoding expanded CUG repeats plays a central role in the development of cardiac disease in DM1. Expanded CUG tracts form both nuclear and cytoplasmic aggregates, yet the relative significance of such aggregates in eliciting DM1 pathology is unclear. To test the pathophysiology of CUG repeat encoding RNAs, we developed and analyzed mice with cardiac-specific expression of a beta-galactosidase cassette in which a (CTG)400 repeat tract was positioned 3â€Č of the termination codon and 5â€Č of the bovine growth hormone polyadenylation signal. In these animals CUG aggregates form exclusively in the cytoplasm of cardiac cells. A key pathological consequence of expanded CUG repeat RNA expression in DM1 is aberrant RNA splicing. Abnormal splicing results from the functional inactivation of MBNL1, which is hypothesized to occur due to MBNL1 sequestration in CUG foci or from elevated levels of CUG-BP1. We therefore tested the ability of cytoplasmic CUG foci to elicit these changes. Aggregation of CUG RNAs within the cytoplasm results both in Mbnl1 sequestration and in approximately a two fold increase in both nuclear and cytoplasmic Cug-bp1 levels. Significantly, despite these changes RNA splice defects were not observed and functional analysis revealed only subtle cardiac dysfunction, characterized by conduction defects that primarily manifest under anesthesia. Using a human myoblast culture system we show that this transgene, when expressed at similar levels to a second transgene, which encodes expanded CTG tracts and facilitates both nuclear focus formation and aberrant splicing, does not elicit aberrant splicing. Thus the lack of toxicity of cytoplasmic CUG foci does not appear to be a consequence of low expression levels. Our results therefore demonstrate that the cellular location of CUG RNA aggregates is an important variable that influences toxicity and support the hypothesis that small molecules that increase the rate of transport of the mutant DMPK RNA from the nucleus into the cytoplasm may significantly improve DM1 pathology

    Functionalized Positive Nanoparticles Reduce Mucin Swelling and Dispersion

    Get PDF
    Multi-functionalized nanoparticles (NPs) have been extensively investigated for their potential in household and commercial products, and biomedical applications. Previous reports have confirmed the cellular nanotoxicity and adverse inflammatory effects on pulmonary systems induced by NPs. However, possible health hazards resulting from mucus rheological disturbances induced by NPs are underexplored. Accumulation of viscous, poorly dispersed, and less transportable mucus leading to improper mucus rheology and dysfunctional mucociliary clearance are typically found to associate with many respiratory diseases such as asthma, cystic fibrosis (CF), and COPD (Chronic Obstructive Pulmonary Disease). Whether functionalized NPs can alter mucus rheology and its operational mechanisms have not been resolved. Herein, we report that positively charged functionalized NPs can hinder mucin gel hydration and effectively induce mucin aggregation. The positively charged NPs can significantly reduce the rate of mucin matrix swelling by a maximum of 7.5 folds. These NPs significantly increase the size of aggregated mucin by approximately 30 times within 24 hrs. EGTA chelation of indigenous mucin crosslinkers (Ca2+ ions) was unable to effectively disperse NP-induced aggregated mucins. Our results have demonstrated that positively charged functionalized NPs can impede mucin gel swelling by crosslinking the matrix. This report also highlights the unexpected health risk of NP-induced change in mucus rheological properties resulting in possible mucociliary transport impairment on epithelial mucosa and related health problems. In addition, our data can serve as a prospective guideline for designing nanocarriers for airway drug delivery applications

    Resveratrol Inhibits Protein Translation in Hepatic Cells

    Get PDF
    Resveratrol is a plant-derived polyphenol that extends lifespan and healthspan in model organism. Despite extensive investigation, the biological processes mediating resveratrol's effects have yet to be elucidated. Because repression of translation shares many of resveratrol's beneficial effects, we hypothesized that resveratrol was a modulator of protein synthesis. We studied the effect of the drug on the H4-II-E rat hepatoma cell line. Initial studies showed that resveratrol inhibited global protein synthesis. Given the role of the mammalian Target of Rapamycin (mTOR) in regulating protein synthesis, we examined the effect of resveratrol on mTOR signaling. Resveratrol inhibited mTOR self-phosphorylation and the phosphorylation of mTOR targets S6K1 and eIF4E-BP1. It attenuated the formation of the translation initiation complex eIF4F and increased the phosphorylation of eIF2α. The latter event, also a mechanism for translation inhibition, was not recapitulated by mTOR inhibitors. The effects on mTOR signaling were independent of effects on AMP-activated kinase or AKT. We conclude that resveratrol is an inhibitor of global protein synthesis, and that this effect is mediated through modulation of mTOR-dependent and independent signaling

    Creation of an open-access, mutation-defined fibroblast resource for neurological disease research.

    Get PDF
    Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community

    Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study.

    Get PDF
    We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)
    • 

    corecore